52 research outputs found

    Atrial fibrillatory rate as predictor of recurrence of atrial fibrillation in horses treated medically or with electrical cardioversion

    Get PDF
    Background The recurrence rate of atrial fibrillation (AF) in horses after cardioversion to sinus rhythm (SR) is relatively high. Atrial fibrillatory rate (AFR) derived from surface ECG is considered a biomarker for electrical remodelling and could potentially be used for the prediction of successful AF cardioversion and AF recurrence. Objectives Evaluate if AFR was associated with successful treatment and could predict AF recurrence in horses. Study design Retrospective multicentre study. Methods Electrocardiograms (ECG) from horses with persistent AF admitted for cardioversion with either medical treatment (quinidine) or transvenous electrical cardioversion (TVEC) were included. Bipolar surface ECG recordings were analysed by spatiotemporal cancellation of QRST complexes and calculation of AFR from the remaining atrial signal. Kaplan-Meier survival curve and Cox regression analyses were performed to assess the relationship between AFR and the risk of AF recurrence. Results Of the 195 horses included, 74 received quinidine treatment and 121 were treated with TVEC. Ten horses did not cardiovert to SR after quinidine treatment and AFR was higher in these, compared with the horses that successfully cardioverted to SR (median [interquartile range]), (383 [367-422] vs 351 [332-389] fibrillations per minute (fpm), P < .01). Within the first 180 days following AF cardioversion, 12% of the quinidine and 34% of TVEC horses had AF recurrence. For the horses successfully cardioverted with TVEC, AFR above 380 fpm was significantly associated with AF recurrence (hazard ratio = 2.4, 95% confidence interval 1.2-4.8, P = .01). Main limitations The treatment groups were different and not randomly allocated, therefore the two treatments cannot be compared. Medical records and the follow-up strategy varied between the centres. Conclusions High AFR is associated with failure of quinidine cardioversion and AF recurrence after successful TVEC. As a noninvasive marker that can be retrieved from surface ECG, AFR can be clinically useful in predicting the probability of responding to quinidine treatment as well as maintaining SR after electrical cardioversion

    Ultrasound diagnosis of a diaphragmatic hernia in a 23-year-old Hanoverian gelding

    Full text link

    Equine electrocardiography

    Full text link
    Analyzing electrocardiographic (ECG) recordings, making a diagnosis and assessment of any arrhythmias present, is an important part of the workup of many equine cases. Accurate analysis requires a good-quality recording, free of as many artifacts as possible, with clear P-QRS-T complex morphology. For sustained arrhythmias, short-term recordings are sufficient to make the appropriate diagnosis before instigating treatment. Longer-term recordings are essential for arrhythmias that are paroxysmal, intermittent, or occurring infrequently, while exercising ECGs are required for arrhythmias associated with physical activity. A stepwise, logical approach to ECG analysis will help the observer to recognize and correctly diagnose any arrhythmias present

    ECG Interpretation in Equine Practice

    Full text link

    Heart rate variability analysis in horses for the diagnosis of arrhythmias

    Get PDF
    Heart rate variability (HRV) analysis has been performed on ECG-derived data sets for more than 170 years but is currently undergoing a rapid evolution, thanks to the expansion of the human and veterinary medical technology sector. Traditional HRV analysis was initially performed to identify changes in vago-sympathetic balance, while the most recent focus has expanded to include the use of complex computer algorithms, neural networks and machine learning technology to identify cardiac arrhythmias, particularly atrial fibrillation (AF). Some of these techniques have recently been translated for use in the field of equine cardiology, with particular focus on improving the diagnosis of arrhythmias both at rest and during exercise. This review focuses on understanding the basic HRV variables and important factors to consider when collecting data for use in HRV analysis. In addition, the use of HRV analysis for the diagnosis of arrhythmias is discussed from human, small animal and equine perspectives. Finally, the future of HRV analysis is briefly introduced, including an overview of future developments in this rapidly expanding and exciting field

    Echocardiographic assessment of left atrial size and function in warmblood horses: reference intervals, allometric scaling, and agreement of different echocardiographic variables

    Get PDF
    BACKGROUND: Echocardiographic assessment of left atrial (LA) size and function in horses is not standardized. OBJECTIVES: The aim of this study was to establish reference intervals for echocardiographic indices of LA size and function in Warmblood horses and to provide proof of concept for allometric scaling of variables and for the clinical use of area-based indices. ANIMALS: Thirty-one healthy Warmblood horses and 91 Warmblood horses with a primary diagnosis of mitral regurgitation (MR) or aortic regurgitation (AR). METHODS: Retrospective study. Echocardiographic indices of LA size and function were measured and scaled to body weight (BWT). Reference intervals were calculated, the influence of BWT, age, and valvular regurgitation on LA size and function was investigated and agreement between different measurements of LA size was assessed. RESULTS: Allometric scaling of variables of LA size allowed for correction of differences in BWT. Indices of LA size documented LA enlargement with moderate and severe MR and AR, whereas most indices of LA mechanical function were not significantly altered by valvular regurgitation. Different indices of LA size were in fair to good agreement but still lead to discordant conclusions with regard to assessment of LA enlargement in individual horses. CONCLUSIONS AND CLINICAL IMPORTANCE: Allometric scaling of echocardiographic variables of LA size is advised to correct for differences in BWT among Warmblood horses. Assessment of LA dimensions should be based on an integrative approach combining subjective evaluation and assessment of multiple measurements, including area-based variables. The clinical relevance of indices of LA mechanical function remains unclear when used in horses with mitral or aortic regurgitation

    The heart in motion

    Full text link
    corecore