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A B S T R A C T

Heart rate variability (HRV) analysis has been performed on ECG-derived data sets for more than 170

years but is currently undergoing a rapid evolution, thanks to the expansion of the human and veterinary

medical technology sector. Traditional HRV analysis was initially performed to identify changes in vago-

sympathetic balance, while the most recent focus has expanded to include the use of complex computer

algorithms, neural networks and machine learning technology to identify cardiac arrhythmias,

particularly atrial fibrillation (AF). Some of these techniques have recently been translated for use in

the field of equine cardiology, with particular focus on improving the diagnosis of arrhythmias both at

rest and during exercise. This review focuses on understanding the basic HRV variables and important

factors to consider when collecting data for use in HRV analysis. In addition, the use of HRV analysis for

the diagnosis of arrhythmias is discussed from human, small animal and equine perspectives. Finally, the

future of HRV analysis is briefly introduced, including an overview of future developments in this rapidly

expanding and exciting field.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

We are fortunate to live in an era of rapid technology

advancement, where our ‘smart’ wristwatch or phone can detect

and alert us to the presence of cardiac arrhythmias, allowing fast

and potentially life-saving interventions to be performed. These

‘smart’ devices are using changes in heart rate variability (HRV) to

alert us to the problem (Li et al., 2019).

Heart rate variability (HRV) is the term used to describe

oscillations in rate between consecutive cardiac cycles captured on

an ECG recording, heart rate monitoring device or other technology

(e.g. utilising photoplethysmography). Either instantaneous heart

rates or intervals between normal QRS complexes (RR intervals,

also referred to as inter-beat intervals or IBI) can be used for

analyses. The degree of variability reflects the complex interplay

between the autonomic nervous system, blood pressure regulation

and reflexes, pulmonary function and gas exchange, gastrointesti-

nal function and other organ system inputs (Shaffer and Ginsberg,

2017). A certain amount of beat-to-beat variability is considered

normal or ‘healthy’ and results from the short term fluctuations in

heart rate associated with predominately parasympathetic inputs

and regulatory mechanisms. Decreased variability is associated

with reduced parasympathetic and increasing sympathetic tone.

This can be a normal physiological response to stress, exercise or

excitement but also occurs during pathological conditions such as

heart failure, following myocardial infarction or with non-cardiac

diseases such as stroke or seizures. Increased variability is also

possible and can be considered a physiological response to waxing

and waning parasympathetic tone (e.g. in dogs with respiratory

sinus arrhythmia) (Hamlin et al., 1966) or with increasing

parasympathetic tone (i.e. following endurance training) (Mourot

et al., 2004). Increased variability also occurs with pathological

conditions such as is seen with particular breathing patterns (e.g.

Cheyne-stokes breathing) (Ernst, 2017) or arrhythmias (Shaffer

and Ginsberg, 2017).

Traditional use of HRV in human medicine has centred around

investigating autonomic balance in states of health and disease. In

human medicine, task force-created guidelines are available that

attempt to standardise nomenclature and specify standard

methods of measurement to be able to compare results across

studies (Malik et al., 1996). Unfortunately, no such standardised

guidelines exist for veterinarians, despite HRV being more widely

used in recent times, both in the research setting and in clinical

practice.

In human medicine, HRV analysis has been utilised across a

wide variety of fields, from detecting foetal distress, predicting

heart failure following myocardial infarction, predicting the onset

of seizures, assessing the effect of overtraining in athletes or to

encourage lifestyle modification (Woo et al., 1992; Perini and

Veicsteinas, 2003; Reed et al., 2005; Perkiomaki et al., 2014;

Disertori et al., 2016; Singh et al., 2018; Giannakakis et al., 2019; Li

et al., 2019).
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Traditional HRV analysis has been performed on longer-term

ECG recordings, with arrhythmic and subsequent complexes being

deliberately excluded during post processing (often by using

software filters). This allows the focus of any inherent variability in

RR intervals to be attributed to sino-atrial node (SAN) function and

thus reflect the balance between the parasympathetic and

sympathetic nervous system inputs into the SAN as well as

intrinsic SAN cellular function. The resulting distance between

adjacent sinus-origin QRS complexes (excluding arrhythmias) is

referred to as the Normal–Normal (NN) interval.

Studies utilising HRV analysis have been reported for a number

of animal species including but not limited to cattle, dogs, small

ruminants, pig, poultry and rodents (Calvert, 1998; Calvert and

Jacobs, 2000; Spier and Meurs, 2004a; Abbott, 2005; Rowan et al.,

2007; von Borell et al., 2007; Moise et al., 2010; Gladuli et al., 2011;

Rasmussen et al., 2012, 2014; Blake et al., 2018; Moise et al., 2020).

In horses, HRV analysis has been broadly studied in many

contexts, although with little standardisation between the

approach of different research groups, making direct comparisons

of study conclusions difficult (Thayer et al., 1997; Physick-Sheard

et al., 2000; Rietmann et al., 2004; Cottin et al., 2006; Ohmura

et al., 2006; Nagel et al., 2010; Munsters et al., 2013; McConachie

et al., 2016; van Vollenhoven et al., 2016; Younes et al., 2016; Broux

et al., 2017; Eggensperger and Schwarzwald, 2017; Frick et al.,

2019).

There is a shortfall of reports in the wider literature regarding

the use of HRV analyses when arrhythmias are present. As

mentioned earlier, traditional HRV data series have the RR intervals

surrounding arrhythmic complexes filtered out. In recent times,

HRV analyses have started looking at differences identified

between normal and abnormal cardiac rhythms, in particular

focusing on common rhythms like atrial fibrillation (AF) or

ventricular tachycardia (Esperer et al., 2008; Li et al., 2019;

Ringwald et al., 2020). Using some of this recent technology, ECG-

linked smart watch (e.g. Apple watch-KardiaBand) or smart phone

apps (e.g. AliveCor-Kardia) systems can fairly reliably diagnose AF

based on the increased beat-to-beat variability that occurs with

this rhythm (Chong et al., 2015; Wegner et al., 2020; Rajakariar

et al., 2020).1

In the equine context, investigation of HRV analyses to diagnose

arrhythmias is an emerging field of research. While recent studies

have shown that HRV is higher in horses with AF and in horses with

arrhythmias during exercise (Broux et al., 2017, 2018; Frick et al.,

2019), further work is ongoing to utilise the available technology to

improve the accuracy and ease of arrhythmia diagnosis in the

horse.

The aim of this review is to summarise the currently available

information about HRV and its use in horses, specifically focusing

on the current use of HRV techniques in horses with arrhythmias.

The future of HRV analysis with respect to mobile technologies and

advanced computer-driven analysis will also be discussed.

Terminology and methodological criteria

The reasons for performing HRV analysis in horses are many and

varied and are summarised in Table 1. To understand and interpret

studies utilising HRV analyses, it is important to understand the

following terminology and methodological criteria.

Heart rate variability terminology

There are three main approaches for HRV analysis – time

domain, frequency domain and non-linear methods (Malik et al.,

1996). Time domain analysis is the simplest group of calculations

to understand and can be further divided into statistical and

graphical (e.g. RR times series, histograms as seen in Fig. 1A and C)

methods of heart rate or RR interval representation. Frequency

domain analysis involves various spectral methods of tachogram

transformation to determine the total power, low frequency and

high frequency components of HRV (see Fig. 1D). Non-linear

analysis is an evolving field in HRV and involves graphical

representations of the data (e.g. Poincaré plots, see Fig. 1B),

complex mathematical equations and transformation of data. From

these three groups, the various HRV parameters can also be

described as short-term components (high frequency/vagal

inputs), longer-term components (low frequency/sympathetic

and parasympathetic inputs) or overall measures of HRV.

Terminology and methods for calculation of the commonly

reported HRV measures are explained in Table 2.

Factors to consider when collecting data for HRV analysis

The factors to consider when collecting data for HRV analyses

are summarised in Table 3.

Type of recording devices

Heart rate variability analysis can be performed on data series

recorded from an ECG, heart rate monitor or other devices that

record pulse waveform information. The main advantages of

collecting data from an ECG recording device (e.g. Televet ECG

recorder) is that QRS detection can be manually verified and

corrected if necessary and a rhythm diagnosis can also be made in

addition to the HRV analysis. Disadvantages include the expense

and wearability of ECG recording units, particularly for longer

duration recordings, although this is a fast-growing area of medical

innovation and newer, more user-friendly devices are constantly

being developed.

Heart rate monitors (those devices detecting RR intervals using

proprietary algorithms, such as the Polar1 heart rate monitor) are

also frequently used in HRV data collection. They can be cheaper

and easier to operate, although they do not allow flexibility in the

manipulation of the data, as the QRS detection cannot be externally

Table 1

Indications for performing heart rate variability analyses in horses with arrhythmias.

Indication

When an overall summary of heart rate and heart rate variability is required (graphical representations are particularly useful here)

To compare the response of a therapy or intervention (e.g. anti-arrhythmic therapy)

To detect subtle arrhythmias (e.g. those with only mild prematurity, just slightly exceeding the normal RR variation in a particular horse)

To compare changes in arrhythmia frequency over time

To evaluate the effect of training or rest on heart rate variability and occurrence of arrhythmias

To monitor for evolution of disease (e.g. failing of compensation mechanisms and subsequent onset of heart failure)

To detect recurrence of an arrhythmia (e.g. atrial fibrillation recurrence after cardioversion)

1 See: Eko Devices, Inc., 2020. Eko AI Validation white paper. https://assets-

global.website-files.com/5d43b941a4923b9c4685f98d/

5e2f3088842db36d0cdf9e70_Whitepaper_Abridged_final.pdf (Accessed 30 No-

vember 2020).
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validated. There is no possibility to evaluate the heart rhythm or P-

QRS-T morphology independently. This is particularly important

when using these devices in horses, as the normal equine ECG

shows frequent T wave morphology changes which can be

incorrectly detected as QRS complexes (oversensing). Most heart

rate monitors utilise proprietary post-processing filters without

providing the user any specific details – resulting in a so-called

‘black box’ for understanding and describing the data handling

process (Parker et al., 2009; Lenoir et al., 2017). The use of heart

rate monitoring devices is not recommended when investigating

horses with arrhythmias because correct identification of the

rhythm is not possible and it is likely that these proprietary artefact

filters will remove arrhythmic beats from the data set.

The fast-growing area of wearable technology has started to

employ photoplethysmography sensors, which detect pulse wave-

forms and can calculate inter-beat intervals, and these data can

also be used to detect variability within the pulse rate in a similar

way to heart rate monitors and ECGs (Castaneda et al., 2018;

Cheung et al., 2018). Many of these new technologies also contain a

so called ‘black-box’, with little available knowledge of the

complex algorithms under-pinning their analyses. Therefore,

caution should always be applied to interpretation of their

reported results and where possible, these devices should be

validated against currently accepted gold-standard technologies.

It is important to consider all these factors when selecting the

kind of device used to collect HRV data, as the type of data output

will have downstream effects when it comes to analysis and

interpretation of results.

Timing of recordings

There is considerable fluctuation in HRV parameters during a 24

h period (a result of the circadian rhythm), depending on the

recording environment and influenced by other animal-related

factors (animal husbandry practices like feeding, handling,

grooming and pasture turn out) (Eggensperger and Schwarzwald,

2017). It is very important to standardise the timing of data

recordings when performing HRV studies (i.e. recordings are

obtained at the same time of day, following a similar to normal

routine). It is also important to realise that HRV parameters may

differ when the animal is in a familiar environment compared to

those obtained in a hospital or research facility. A period of

acclimation may be required when introducing animals to a new

facility before reliable data can be obtained.

Length of recordings

Similarly, it is very important to standardise the length of

recordings when collecting data for HRV analyses (Eggensperger

and Schwarzwald, 2017). It is considered inappropriate to compare

time-domain measures (especially those representing overall

HRV) obtained from recordings of different durations. Additionally,

some HRV variables can only be calculated on recordings over a

certain length (i.e. SDANN – the standard deviation of the averages

of NN intervals in all 5 min segments of the entire recording,

requires a recording considerably longer than 5 min to achieve a

reliable output). Indices like the triangular index (TI) are based on

the summation of all intervals and therefore, are affected by

shorter duration recordings and by the lower overall heart rate of

horses (and subsequent number of observations) compared to

other species (Eggensperger and Schwarzwald, 2017).

Resting or exercising recordings

Depending on the question wishing to be answered, the data

should be collected either at rest or during an intervention (i.e.

therapy or exercise). The conditions should be standardised

wherever possible to try and reduce confounding factors into

the HRV analysis. Recent evidence provided by Lenoir et al. (2017)

indicated that caution should be applied when analysing data

Fig. 1. (A) An RR interval time series plot (also referred to as tachogram) from a healthy horse obtained from a 17 h resting ECG recording. The orange arrows indicate periods

of sinus tachycardia occurring during this period, a normal finding in horses. No atrio-ventricular blocks were detected. (B) The same data set as A, presented as a Poincaré

plot, with each RR interval (RRn) plotted against the following RR interval (RRn+1). The majority of the RR interval pairs (RRn vs. RRn+1) are visualised along the line of identity,

indicating relatively little beat-to-beat variation (98% of all beats in this recording fall between �7% and +7% RR deviation). This Poincaré pattern is known as a ‘comet’ pattern.

The axis along which the heart rate variability indices SD1 and SD2 are calculated, are indicated. A single atrial premature complex occurring during this recording is identified

by the red arrow (normal RR interval followed by the shorter RR interval of the premature complex) and the green arrow (shorter RR interval of the premature complex

followed by a longer RR interval, consistent with a pause occurring as a result of the premature complex). (C) The same data set as A, presented as a histogram, showing the

distribution of RR intervals. The largest peaks occur at longer RR intervals (i.e. around 1.5 s, corresponding to a HR of 40 beats per min [bpm]), which is typical of a horse at rest.

(D) The same data set as A, presented after Fast Fourier Transformation of the data. The frequency bands were defined as very low frequency 0–0.01 Hz (grey), low frequency

0.01–0.07 Hz (pink) and high frequency 0.07–0.6 Hz (green) bands on the graph (as defined by Marr and Bowen, 2010).
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Table 2

Basic terminology explanations: short term, long term, and overall heart rate variability (HRV) indices.

Variable Units Type of

analysis

Explanation Calculated by Notes

Overall HRV assessment

Mean

heart rate

bpm Time

domain

The mean heart rate present in

the time series analysed

Sum of instantaneous heart rates/

number of observations

Mean RR

(NN)

interval

ms Time

domain

The mean RR (NN) interval

present in the time series

analysed

Sum of RR intervals/number of

observations

SDNN

(SDRR)

ms Time

domain

Standard deviation of NN (RR)

intervals in the time series

Square root of the variance Only compare between similar length recordings

Triangular

index

Time

domain

Integral of the density of NN

(RR) interval histogram,

divided by the height of the

histogram

Total number of NN (RR) intervals/

number

of NN (RR) intervals in the modal bin

Longer recordings provide more stable data

TINN ms Time

domain

Triangular interpolation of the

NN (RR) interval histogram

Baseline width of the NN (RR) interval

histogram

Longer recordings provide more stable data

Total

power

n.u.

ms2

Hz

Frequency

domain

Signal energy found within all

frequency bands – represents

variance of all NN intervals

Transformation of the data by various

algorithms (e.g. FFT)

Validation of the appropriate frequency band cut-offs is

lacking in veterinary studies

LF/HF Frequency

domain

Ratio of low to high frequency

power

Transformation of the data by various

algorithms (e.g. FFT)

Represents complex interplay between

parasympathetic and sympathetic nervous systems.

Interpretation depends on the study context.

SD1/SD2 Non-linear

domain

Ratio of SD1 to SD2 Created from Poincaré plots as described

below

Requires a longer data set

Short-term components (high frequency/vagal input)

RMSSD ms Time

domain

Square root of mean squared

differences between

successive NN intervals

Calculate each successive difference

between heart beats, square each value

and average them, then square root the

total.

Mathematically identical to SD1

SD1 ms Non-linear

domain

Standard deviation of Poincaré

plot, perpendicular to the line

of identity (width)

The width of an ellipse fitted to the

plotted

points on a Poincaré plot – calculate the

standard deviation (square root of the

variance)

of all the distances from the point y = x

axis

(line of identity).

Mathematically identical to RMSSD

HF n.u.

ms2

Hz

Frequency

domain

High frequency (rapidly

fluctuating) spectral

components

Transformation of the data by various

algorithms (e.g. FFT).

Validation of the appropriate frequency band cut-offs is

lacking in veterinary studies.

Variations can relate to parasympathetic nervous

system tone and respiratory frequency in humans

Long-term components (low frequency/sympathetic � vagal inputs)

SDANN ms Time

domain

Standard deviation of the

average NN intervals in all

non-overlapping 5 min

segments

For each 5 min segment of recording, the

mean NN interval is calculated. The

combined mean and standard deviation

of

all segments is then determined.

Long data sets required

SD2 ms Non-linear

domain

Standard deviation of the

Poincaré plot, along the line of

identity (length)

The length of an ellipse fitted to the

plotted

points on a poincare plot – calculate the

standard deviation (square root of the

variance) of all the distances from the

point

y = x + average RR interval.

LF n.u.

ms2

Hz

Frequency

domain

Low frequency spectral

components

Transformation of the data by various

algorithms (e.g. FFT).

Validation of the appropriate frequency band cut-offs is

lacking in veterinary studies. Represents inputs from

the parasympathetic and sympathetic nervous system

and baroreceptors

bpm, beats per min; FFT, Fast fourier transformation; ms, milliseconds; ms2, milliseconds squared; Hz, hertz; n.u., normalised units.

Table 3

Factors to consider standardising when collecting and analysing data for heart rate variability (HRV) analysis.

Factor

Type of recording device (e.g. traditional ECG recording vs. heart rate monitor)

Timing of the recording, as there is considerable fluctuation in HRV parameters over a 24 h period

Length of recording – particularly important when looking at indices of long-term HRV

Use of RR interval or PP interval data sets in horses, given the frequent occurrence of 2nd degree atrio-ventricular blocks at rest in some horses

Resting vs. exercising recordings

Post processing, filtering and automated ‘black box’ analysis

K.J. Mitchell and C.C. Schwarzwald The Veterinary Journal 268 (2021) 105590
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obtained from equine heart rate monitors during exercise as there

was poor agreement with HRV parameters obtained from a

simultaneously recorded ECG.

Post processing/filtering

The recorded RR interval sequence should be free of artefacts and

traditionally also excluding rhythm disturbances other than sinus

arrhythmias (resulting in the NN interval sequence). Some reports

describe using adaptive filtering algorithms to replace the abnormal

inter-beat intervals with interpolated ‘normal’ data points (Lerma

et al., 2008). This cleaning of data can be performed manually,

automatically performed by proprietary software included in the

device or using open access HRV software. Some post processing

functions provided by open access HRV software (e.g. Kubios HRV

software, University of Eastern Finland) allow for application of

different degrees of artefact correction (in Kubios described as very

low to very strong thresholds) or a custom threshold can be applied

(intervals x ms different is filtered out; Tarvainen et al., 2014).

If too much artefact correction is applied, loss of some ‘normal’

NN intervals will occur, while if artefacts are not appropriately

excluded this could also alter the data analysis and lead to

misinterpretation. Fig. 2 shows the effects of artefact filters applied

to a manually corrected or uncorrected data set. It is important

when reporting on studies that include HRV analysis that specific

details about data handling, post processing and filtering are

included in a clear and transparent manner.

Use of HRV analysis with arrhythmias: the human perspective

The use of HRV analyses in humans has expanded far beyond

that limited to just the field of cardiology. In particular, sports

medicine and many areas of lifestyle management have adapted

HRV techniques to detect overtraining in elite athletes, predict the

development of acute mountain sickness in mountaineers or alert

a person with epilepsy to an imminent seizure, among many other

uses (Mellor et al., 2018; Singh et al., 2018; Giannakakis et al.,

2019).

Fig. 2. (A) An RR interval time series plot from a healthy horse obtained from a 20 h resting ECG recording. The orange arrows indicate periods of second-degree atrio-

ventricular (AV) block, a common finding in resting horses. This data set has been manually evaluated for accurate QRS detection and corrected where required. (B) The same

data set as in A, with an automated artefact filter applied at ‘very low’ settings (Kubios HRV v3.1.0, 2017, University of Eastern Finland). The second-degree AV blocks have been

removed by the filter, including approximately 0.7% of the RR intervals in the data set. This level of filtering may be appropriate if the investigator wants to automatically

remove the influence of AV blocks from the heart rate variability analysis (Eggensperger and Schwarzwald, 2017), but might cause undesired loss of data. (C) The same data set

as in A, however this data set has not been manually evaluated for accurate QRS detection and therefore, errors in QRS detection occur frequently (compare this tachogram

with that above in A) and are seen as upward and downward spikes on the tachogram. (D) The same data set as C, with a ‘very low’ artefact filter applied. The artefacts created

by the inaccurate QRS detection have been removed, with approximately 2.6% of all the RR intervals removed from the data set. (E) The same data set as C, with a ‘very strong’

artefact filter applied. Here more than half of the RR intervals have been removed, resulting in a much smaller and less representative data set.
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In the field of arrhythmia detection and management, the

main area that has been under recent development is that

surrounding AF. Atrial fibrillation is the most common sustained

tachyarrhythmia described in people, with a large number of

challenges and costs associated with its diagnosis and manage-

ment. This had led to the rapid expansion of methodologies and

technology that is focused on improving these areas (Li et al.,

2019; Wegner et al., 2020; Rajakariar et al., 2020). Many of these

technologies rely on the development of complex algorithms that

include data on heart rate, HRV, ECG morphology (if recorded

using a device that contains ECG leads) and components of

machine learning technology, where the devices ‘learn’ to

differentiate patterns between normal and abnormal (e.g. AF)

rhythms (Sansone et al., 2013). These technologies still rely on the

fundamental of obtaining good quality data (i.e. free of noise and

artefacts) but can provide an accurate evaluation of the rhythm or,

if the findings are unclear, can facilitate a more thorough

evaluation by a third-party expert (Li et al., 2019; Pereira et al.,

2020).

Many of the HRV analyses performed in human medicine have

the arrhythmic complexes and surrounding beats removed or

replaced by interpolated data. Among other things, these data sets

are utilised for prognosticating about the risk of developing

different arrhythmias. As one example, a large amount of work has

focused on using HRV patterns preceding periods of ventricular

tachyarrhythmia, to predict life-threatening cardiac events,

particularly using implantable cardioverter defibrillators. Early

prediction of a ventricular tachyarrhythmic event can allow a

tiered approach to real-time therapy and is less battery intensive,

improving both clinical outcomes and the lifespan of the device

(Parsi et al., 2019).

Heart rate turbulence is a specific measure of HRV, which

looks at the presence of ventriculophasic sinus arrhythmia

(short-term heart rate acceleration then deceleration) following

a ventricular premature complex (VPC). Loss of this turbulence

(i.e. absence of the ventriculophasic sinus arrhythmia) is

associated with increased risk of arrhythmia or sudden cardiac

death, particularly following myocardial infarction or heart

failure (Lombardi et al., 2007; Disertori et al., 2016). This, and

many similar HRV measures have shown promise in the

development and validation phases of various monitoring

devices and are now being brought to clinical practice,

particularly through rapid expansion of the wearable medical

technology market (Cheung et al., 2018).

The Poincaré plot (sometimes referred to as a Lorenz plot) is a

graphical representation of an entire data set, where each RR

interval (RRn) is plotted on the x-axis, against the next following

RR interval (RRn+1) on the y-axis. A normal equine example is seen

in Fig. 1B. These graphical tools provide a global view of overall

HRV, while evaluation of the width (SD1, see Table 2) and length

(SD2, see Table 2) of an ellipse fitted to the plot can provide

objective measures of short-term and long-term HRV. These plots

can be assessed subjectively and classified based on their

similarity to familiar shapes – comet pattern, torpedo pattern,

fan pattern, double or triple side-lobe pattern or propeller pattern

being the most common patterns described in the literature

(Esperer et al., 2008; Zhang et al., 2015). When arrhythmic

complexes are not excluded (i.e. filtered out) from an RR data set,

identification of specific patterns can be used for rhythm

diagnosis (Esperer et al., 2008; Zhang et al., 2015; Borracci

et al., 2018). In addition, these geometric patterns can be further

analysed by complex computer algorithms, which are combined

with other HRV variables within classifiers like artificial neural

networks and support vector machines, allowing rapid, automat-

ed, objective analysis of complex data sets (Zhang et al., 2015;

Pereira et al., 2020).

Use of HRV analysis with arrhythmias: the small animal

perspective

In the small animal veterinary field, utilising HRV analysis in

animals with arrhythmias occurs less commonly than is seen in

human medicine.

The main descriptions of HRV analyses in the context of canine

arrhythmia appear in the literature when attempting to stratify

risk of ventricular tachyarrhythmias and sudden cardiac death in

populations of dogs with cardiomyopathy (particularly Boxers and

Dobermans) or mitral valve disease (Calvert, 1998; Calvert and

Jacobs, 2000; Calvert and Wall, 2001; Spier and Meurs, 2004a;

Rasmussen et al., 2012, 2014). Changes in HRV (decreased from

control animals) were typically seen in dogs with clinical heart

failure; while animals with frequent ventricular arrhythmia

unrelated to heart failure were not different (although ventricular

arrhythmias were excluded from the dataset in these studies).

Heart rate turbulence (as described earlier) calculated in ECG data

sets from Dobermans could be found reduced in dogs with

preclinical dilated cardiomyopathy as compared with healthy

controls, indicating a loss of the short-term changes in sinus

rhythm (Harris et al., 2017).

Interestingly, the Poincaré plot patterns of healthy dogs have

been described by Blake et al., in 2018 and there is a marked

difference in the geometrical patterns of normal dogs when

compared with the human literature (Esperer et al., 2008; Moise

et al., 2020). In fact, dogs seem to exhibit a predominantly Y shaped

fan pattern (shown in Fig. 3), which is more typical of the pattern

that is described in people with AF (Esperer et al., 2008; Zhang

et al., 2015). This is considered, in part, to be related to the rapid,

frequent and dramatic effect that respiratory sinus arrhythmia has

on increasing and decreasing the RR interval (Hamlin et al., 1966;

Blake et al., 2018; Moise et al., 2020). In addition, a common ‘zone

of avoidance’ was identified, where a lower density of points was

observed in the central area of the canine plots. This corresponds to

a range of RR intervals that occur with lower frequency than others

and is thought to relate to the process of initiation of the cardiac

Fig. 3. A representative Poincaré plot created from a 24 h ambulatory ECG recording

from a healthy dog. (A) stalk representing short–short RR intervals; (B1) arm

representing short–long RR intervals; (B2) arm representing long–short RR

intervals; (C) cluster representing long-long RR intervals; (D) zone of lower density

representing a range of RR intervals occurring infrequently. Reproduced with

permission, Blake et al. (2018).
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Fig. 4. (A) A PP interval time series plot from a healthy horse over a resting 10 h recording period. This data series was extracted using emka ecgAuto software (emka

Technologies). The influence of most of second-degree atrio-ventricular (AV) blocks has been removed using this technique. However, some PP intervals appear to have

escaped detection (resulting in PP intervals twice as long as normal – green arrows). (B) The same data set as in A, this time reported as an RR interval time series plot. Here the

second-degree AV blocks can be seen as upwards spikes through the time series. (C) The same data as in B, with a ‘very low’ artefact filter applied, resulting in removal of the

second-degree AV blocks and loss of 1.2% of the RR intervals. These data appear similar to that obtained using the PP interval detection seen in A.

Fig. 5. (A) A Poincaré plot created from the PP time series data seen in Fig. 4A. This horse exhibits a central ‘wedge’ pattern with small side lobes consistent with atrial

premature complexes (approximately 50 in 10 h of recording). Some PP intervals appear to have escaped detection (resulting in PP intervals twice as long as normal – green

and red arrows). (B) A Poincaré plot created from the RR time series data seen in Fig. 4B. Here, the central ‘wedge’ pattern with small side lobes is seen (red and green circles),

with additional clusters of second-degree atrio-ventricular blocks present (orange circles). (C) A Poincaré plot created from the filtered RR time series data seen in Fig. 4C.

Here, only the central ‘wedge’ pattern is seen and most of the premature complexes, subsequent pauses and second-degree AV blocks have been filtered out.

Fig. 6. The first Poincaré plot is created from an RR interval data set recorded from a horse with atrial fibrillation (AF), at rest, over a 24 h period. In contrast with the ‘comet’

pattern seen in the Poincaré plot of Fig. 1B, this pattern is described as a ‘fan’ or ‘butterfly’ pattern, representing the irregularly-irregular nature of AF. The thin black lines

indicate RR deviation from the line of identity (which represents 0% RR deviation) by 5%, 8%, 20% and 30%. The second Poincaré plot is from the same horse, immediately

following conversion of AF to normal sinus rhythm. A central ‘comet’ shape is seen, representing the more regular beat-to-beat nature of this ECG. Clouds or lobes are seen to

either side of the central ‘comet’. The red circled cloud represents normal RR intervals followed by a shorter RR interval (as with an atrial premature complex) while the green

circled cloud represents the shorter RR interval, followed by a longer RR interval (as with a pause following the premature complex). The third Poincaré plot is from the same

horse, presented for a recheck evaluation 1 month after conversion to sinus rhythm. A similar central ‘comet’ shape is identified and the clouds to either side of the ‘comet’

contain fewer dots, consistent with a reduction in the frequency of atrial premature complexes during this recording.
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rhythm within the SAN and subsequent conduction through the

sino-atrial pathways (Moise et al., 2010, 2020).

In the context of AF, no clinical studies utilising HRV in the

diagnosis of naturally occurring AF in dogs have been performed.

Heart rate variability analysis has been reported in dogs with sick

sinus syndrome, where periods of supraventricular tachycardia

and varying AV nodal conduction have been described using

unique patterns on Poincaré plots and tachograms and in changes

to short-term HRV parameters (Gladuli et al., 2011; Bogucki and

Noszczyk-Nowak, 2017).

Use of HRV analysis with arrhythmias: the equine perspective

In the equine field, HRV analysis to identify or describe

arrhythmias has seen several recent developments. Particularly

with the rapidly evolving veterinary medical technology sector and

translation from human medicine, several groups have been

working to utilise the available technology from an equine

perspective.

Normal sinus rhythm

A recent study reporting the use of Poincaré plots to describe

patterns of overall HRV in healthy horses has shown that horses

have similar patterns to those described in people, commonly

called comet or torpedo shaped. This is in contrast to the patterns

described in dogs (fan or Y shaped), indicating much less influence

Fig. 7. Data from 29 horses that underwent a high-speed standardised exercise

treadmill test with an ECG recorded simultaneously. The number of arrhythmias

during the ECG recording were counted, with arrhythmias during the recovery

period reported in this figure. The square root of mean squared differences between

successive NN intervals (RMSSD; ms) was calculated for the recovery phase of each

horse. Orange, horses without arrhythmias during recovery (n = 7); black, horses

with atrial or ventricular premature complexes during recovery (n = 16); purple,

horses with second-degree atrio-ventricular blocks, sinus pauses or marked sinus

arrhythmia during recovery (n = 4); red, horses with second-degree atrio-

ventricular blocks, sinus pauses or marked sinus arrhythmia and ventricular

premature complexes during recovery (n = 2). The largest variation in RMSSD

occurred in horses that showed second-degree atrio-ventricular blocks, sinus

pauses or marked sinus arrhythmia during recovery.

Fig. 8. (A) An RR interval time series plot from a horse during a high-speed standardised exercise treadmill test, with an ECG recorded simultaneously. Very little variation is

seen between RR intervals until the recovery phase. The orange circle contains RR intervals occurring as a result of 30 atrial premature complexes, occurring during the

recovery phase. A downward spike represents the shorter RR intervals of the premature complex, while an upward spike represents the longer RR intervals occurring after the

premature complex and subsequent resetting of the sinus node. (B) A Poincaré plot created from the RR interval time series during the period of trotting exercise. The rhythm

is regular and there is very little beat-to-beat variation detected (�2.5% to +2.4% RR deviation). The square root of mean squared differences between successive NN intervals

(RMSSD) calculated for this segment is 3.8 ms. (C) A Poincaré plot created from the RR interval time series during the period of cantering exercise. The rhythm is regular and

there is very little beat-to-beat variation detected (�3.2% to +3.2% RR deviation). The RMSSD calculated for this segment is 3.1 ms. (D) A Poincaré plot created from the RR

interval time series during the period of recovery after exercise. Some of the rhythm is regular but there is a period of irregular rhythm that starts when the heart rate drops

below approximately 100 beats per min (bpm) and ends once the heart rate drops below 75 bpm (�28% to +47% RR deviation). The red circled cloud represents normal RR

intervals followed by a shorter RR interval (as with an atrial premature complex) while the green circled cloud represents the shorter RR interval, followed by a longer RR

interval (as with a pause following the premature complex). The RMSSD calculated for this segment is 65.3 ms. (E) A representative segment of ECG recorded during the

recovery phase. The atrial premature complexes are identified (red arrows). The RR interval sequences surrounding the premature complex are displayed (black double-ended

arrows, ms).
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of respiratory sinus arrhythmia and other, as yet, unknown factors

on the pattern of HRV in horses (Esperer et al., 2008; Zhang et al.,

2015; Blake et al., 2018; Kuhni et al., 2020; Moise et al., 2020).

Healthy horses typically show between �13% to +21% RR interval

beat-to-beat variation unless atrioventricular blocks are present

(Flethoj et al., 2016; Kuhni et al., 2020). The within-horse,

between-day repeatability of Poincaré plot patterns was found

to be excellent (Kuhni et al., 2020).

Second-degree atrio-ventricular blocks

The question of whether atrio-ventricular (AV) blocks should be

included or excluded in analysis is particularly relevant for the

discussion of HRV analysis in horses. Tonic vagal inhibition of sinus

impulse generation and conduction occurs at both the sino-atrial

and atrio-ventricular level, resulting in sinus arrhythmias and AV

blocks (AVBs) in some horses. Second-degree AV blocks are

frequently excluded from data analysis by the automatic filtering

features of heart rate monitoring devices, resulting in a loss of data

about inputs from the parasympathetic nervous system. One way

to avoid this bias is to detect and calculate PP intervals rather than

RR intervals, which can be performed with specific ECG analysis

software (e.g. emka ecgAuto software, emka Technologies, France)

(Eggensperger and Schwarzwald, 2017). This study elegantly

showed the effects of including or excluding AVB on HRV analysis

and indicated that application of an artefact filter set to a ‘very low’

level had good agreement with the PP based sets, thereby

simulating the situation where AVB are removed. An example of

this is seen in Figs. 4 and 5. This is important for future studies to

consider, particularly when investigating parasympathetic-sym-

pathetic nervous system balance.

Sustained arrhythmias

Similar to human medicine, AF is the arrhythmia most

frequently studied in the context of equine HRV analysis. Two

studies have described the differences in HRV variables between

horses in sinus rhythm and in AF (Broux et al., 2017, 2018). These

studies found, similar to the human experience, that HRV was

markedly increased in horses where AF is present. An example of

this is described graphically using Poincaré plots in Fig. 6. An

important accessory finding of the study by Broux et al., in 2018

was that overzealous application of artefact filters could lead to a

substantial loss of data, reducing the ability to differentiate

between sinus rhythm and AF. In itself, these findings of increased

HRV in horses with AF are neither new nor unsurprising, as AF is

well known as an irregularly irregular rhythm. The importance of

these findings is in the context of utilising this detection of

increased heart rate variation in home monitoring or training

recording devices, where owners and trainers are alerted to the

Fig. 9. (A) An RR interval time series plot from a horse during a ridden field exercise test, with an ECG recorded simultaneously. The blue area of the top graph is extended

below (selected RR series) and corresponds with a period of fast gallop. The rhythm appears regular until the red arrow, when a period of rapid tachycardia occurs

(corresponding with the ECG seen in C). Four complexes with short RR intervals are identified, followed by one more regular and one complex with a longer RR interval. The

relationship between the six complexes can clearly be seen in the tachogram. Addition periods of arrhythmia are shown by the orange arrows (corresponding with the ECG

seen in D). These are single complexes with short RR intervals followed by longer RR intervals. (B) A Poincaré plot created from the selected RR interval time series described in

A (the segment of RR tachogram in blue). Most of the RR interval pairs fall on the line of identity, indicating a regular rhythm with low beat-to-beat variability however, the red

circled cloud represents normal RR intervals followed by a shorter RR interval (as with the premature complexes) while the green circled cloud represents the shorter RR

interval, followed by a longer RR interval (as with a pause following the premature complex). (C) A representative segment of ECG recorded during the period of arrhythmia

highlighted with the red arrow in A. The premature complexes and their respective instantaneous heart rates are highlighted in red text. These QRS complexes show similar

morphology to the surrounding sinus beats and are difficult to recognise by simply looking at QRS complex morphology. (D) A representative segment of ECG recorded during

the period of arrhythmia highlighted with the orange arrows in A. The premature complexes and their respective instantaneous heart rates are highlighted in orange text.

These QRS complexes show similar morphology to the surrounding sinus beats and are difficult to recognise by simply looking at QRS complex morphology.

K.J. Mitchell and C.C. Schwarzwald The Veterinary Journal 268 (2021) 105590

9



development or reoccurrence of AF, thus allowing the horse to

receive appropriate interventions more rapidly.

Intermittent/paroxysmal arrhythmias

Currently, there is only a single publication describing the use of

HRV analysis to detect intermittent or paroxysmal arrhythmias in

horses. The study by Frick et al. (2019) found that during exercise,

where normal beat-to-beat variability should be very low, horses

with arrhythmias had far greater variability compared to horses in

normal sinus rhythm. This effect was dependent on the number

and type of arrhythmias (a larger number of arrhythmias resulted

in higher HRV, AV blocks and sinus pauses resulted in larger beat-

to-beat variations, this is shown in Fig. 7) and was seen most

strikingly during the recovery phase after exercise, where

arrhythmias were more prevalent. An example of this is seen in

Fig. 8.

In particular, the graphical representations of HRV are useful

when examining exercising ECG recordings. The normal low beat-

to-beat variability can be clearly seen in both the RR interval time

series tachograms and in Poincaré plots (Fig. 8A, B and C). Any

premature complexes, subsequent pauses or delayed complexes

Fig. 10. (A) An RR interval time series plot from a horse during a lunging exercise test, with an ECG recorded simultaneously. The blue area of the top graph is highlighted

below (selected RR series) and corresponds with the period of recovery after exercise. The rhythm appears regular until the orange arrow, when a period of sudden

deceleration of heart rate occurs (corresponding with the ECG seen in C) once the heart rate drops below approximately 100 beats per min (bpm). These are second-degree

atrio-ventricular (AV) blocks mostly blocking one sinus beat at a time, although there are several periods (green arrows) of two sinus beats blocked in a row. The relationship

between the sudden decelerations clearly be seen in the tachogram. No premature complexes are noted during this recording period. (B) A Poincaré plot created from the RR

interval time series described in A (the selected segment of RR tachogram marked in blue). Most of the RR interval pairs fall on the line of identity, indicating a regular rhythm

with low beat-to-beat variability however, the solid orange circled cloud represents normal RR intervals followed by a twice as long RR interval (as with a single second-

degree AV block) while the solid green circled cloud represents the normal RR interval, followed by a RR interval that is three times longer (as with two second-degree AV

blocks in a row). The dotted orange-circled cloud represents the RR intervals that are twice as long, followed by normal intervals (as after a single second-degree AV block)

while the dotted green-circled cloud represents the RR intervals that are three times as long, followed by normal intervals (as after two second-degree AV blocks in a row). (C)

A representative segment of ECG recorded during the period of arrhythmia highlighted with the green arrows in A. Two second-degree AV blocks are present in a row (green

arrows).

Fig. 11. These three Poincaré plots are created from RR interval data sets recorded from a horse with severe aortic regurgitation and left ventricular (LV) and left atrial

enlargement, at rest, each over a 24 h period. In contrast with the normal ‘comet’ pattern seen in the Poincaré plot of Fig.1B, this pattern is described as a ‘three lobed’ pattern,

representing a sinus rhythm and frequent ventricular ectopy. The first recording was obtained before any therapy was commenced. The red circled cloud (or ‘lobe’) represents

normal RR intervals followed by a shorter RR interval (as with the ventricular premature complexes) while the green circled cloud (or ‘lobe’) represents the shorter RR interval,

followed by a longer RR interval (as with a pause following the premature complex). The third, orange circled cloud (or ‘lobe’) represents the longer RR interval followed by a

normal RR interval (as with a normal complex following the pause). The thin black lines indicate RR deviation from the line of identity (which would represent 0% RR

deviation) by 5%, 8%, 20% and 30%. The second Poincaré plot is from the same horse, 6 months after commencing therapy with an angiotensin-converting enzyme inhibitor

(ACEI). The ‘three lobed’ appearance is still present, however each of the clouds appears to have less density, representing less frequent ventricular ectopy.

Echocardiographically, this horse showed reduced left ventricular (LV) and left atrial dimensions and improved LV systolic function. The third Poincaré plot is from the same

horse, presented for a recheck evaluation 1 year after the initial examination, still undergoing therapy with the ACEI. The ‘three lobed’ pattern is still present and there is an

increased density to each of the lobes, indicating a higher frequency of ventricular ectopy. Echocardiographically, while the LV systolic function was maintained, the LV

dimensions were increased slightly but were still smaller than 12 months previously.
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are clearly identified and the relationship between beats in

complex periods of arrhythmia can be examined. Examples of this

are seen in Fig. 8D and E and in Figs. 9 and 10. The visual display of a

data set allows rapid interpretation and understanding of the

number, complexity and timing of any complexes that disturb the

normal sinus rhythm. Detailed evaluation of the ECG tracing is still

required to detect interpolated or fusion beats that fail to disrupt

the underlying rhythm.

The authors also use HRV graphical analysis to provide

summary information about arrhythmia frequency during lon-

ger-duration Holter recordings. These can provide the clinician a

rapid assessment of the overall rhythm for the duration of the

recording as can be seen in the example of a horse following

conversion from AF (see Fig. 6) where the Poincaré plot clearly

shows a reduction in the number of atrial premature complexes 1

month after conversion. Similarly, in Fig. 11, the number of VPCs in

a horse with severe aortic regurgitation and left ventricular

enlargement can be visually estimated. A decrease in number of

VPCs is seen 6 months after commencing therapy with an

angiotensin-converting enzyme inhibitor; however, after a further

6 months of therapy there is an increase in the number of VPCs.

This fitted with evidence of disease progression detected

echocardiographically, although day-to-day variability in the

absolute arrhythmia burden of such horses is not yet reported

in the literature and could account for some of the change seen in

this Poincaré plot (Spier and Meurs, 2004b).

Outlook for equine ECG and HRV analysis: machine learning, support

vector machines and artificial neural networks

The detailed analysis of ECGs, heart rate or pulse waveform data

sets involves many time-consuming steps to the process. It is of

critical importance that good quality recordings are obtained in the

first instance, to reduce the interference of artefacts on accurate

detection of the inter-beat intervals. The manual analyses of these

data sets by individuals such as clinicians is not sustainable in the

longer term. Therefore, integration of advanced computer algo-

rithms for pattern recognition, disease surveillance and other

clinical utilities will provide faster and hopefully more accurate

information to the end-user (Sansone et al., 2013; Tison et al., 2018;

Pereira et al., 2020). The first of these approaches applied to equine

cardiology has just been reported, describing the use of an artificial

neural network to correctly classify isolated premature complexes

within equine ECG recordings (Van Steenkiste et al., 2020).

Another group has investigated the use of complexity estima-

tion techniques, which break down the ECG tracing into a series of

binary data, to analyse resting ECGs in horses reported to have a

history of paroxysmal AF (PAF). While preliminary, their results

suggest that horses with a history of PAF have lower complexity in

their sinus rhythm recordings when compared with controls,

which could aid in the diagnosis of PAF in horses (Alexeenko et al.,

2020). These studies open the door for pathways for the future and

this rapidly expanding area will provide many exciting findings in

the years to come.

Conclusions

Heart rate variability analysis can be extremely useful when

examining data sets acquired from individuals with arrhythmias.

The rapid expansion of knowledge in interpretation of changes in

HRV variables as a consequence of arrhythmia is helping improve

our recognition and treatment of arrhythmias in a number of

different contexts, particularly in the human field. By translation of

these data analysis techniques to our equine patients, we will also

be able to improve our understanding of disease mechanisms,

predict adverse outcomes and improve our therapeutic strategies

for horses with cardiac arrhythmias.
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