24 research outputs found

    The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom

    Get PDF
    A number of countries have introduced energy policies to reduce the emission of carbon dioxide which, in the case of bio-heat, has resulted in increased use of small wood burning stoves and boilers, particularly in Europe. There are issues surrounding the supply of sustainable wood feedstock, prompting a desire to utilise local biomass resources. This includes biomass generated through the management of natural woodlands in nature reserves and conservation areas. These management practices can also extend to other areas, such as raised bog wildernesses and estuary Reed beds. We term the biomass from this resource as conservation biomass. This study is concerned with the viability of this resource as a fuel within the United Kingdom, and combustion tests were carried out using a small domestic stove. It was concluded that there is as much as 500 kt y−1 that could be used in this way

    The Impact of Fuel Properties on the Composition of Soot Produced by the Combustion of Residential Solid Fuels in a Domestic Stove

    Get PDF
    Soot is formed from the incomplete combustion of biomass and conventional fossil fuels. It consists largely of a carbonaceous core termed Elemental Carbon (EC) with adsorbed volatile organic species, commonly termed Organic Carbon (OC). Estimation of the ratio of BC/OC is critical as climate models have recognised the Global Warming Potential (GWP) of BC as the second most important climate forcing agent after carbon dioxide. This paper presents values of EC, OC and EC/TC (where TC = EC + OC) for three different soot types: Firstly, soots collected on filters from the combustion of eight fossil fuel and biomass residential solid fuels (RSF), burned in a 6 kW heating stove. Secondly, chimney soot deposits taken from 'real-life' stoves installed in domestic homes; and finally wick burner soots generated from biomass model compounds; namely eugenol, furfural and anisole. Values of the EC/TC ratios for wood logs, torrefied briquettes, coal and smokeless fuel are given. These ratios are highly dependent on burning conditions; namely the flaming and smouldering phases. The results of this study suggest that EC and OC emissions from various solid fuels differ substantially in composition and relative proportion, which is useful information for climate models

    Organic Carbon Emissions from the Co-firing of Coal and Wood in a Fixed Bed Combustor

    Get PDF
    Co-firing of biomass and coal and biomass reduces the emission of pollutants and the overall effects have been extensively studied, but many aspects of the detailed mechanism remain uncertain. A number of studies have been previously made by us of emissions from the combustion in a fixed-bed furnace of bituminous coal and wood, both individually and together, and it was observed that biomass produced less soot and lower NOX emissions. These data are combined with recent measurements of emissions of black carbon (BC) and organic carbon (OC), which are an important source of climate forcing, from the combustion of a number of solid fuels. Conclusion are drawn about the nature of the OC and how the values are dependent on the measurement technique used. Complementary analytical-scale combustion and pyrolysis experiments were also carried out. The results of the analysis of emissions and reaction products, mainly by gas chromatography–mass spectrometry (GC–MS), were interpreted so as to construct a model for pollutant formation during co-firing

    Emissions performance of high moisture wood fuels burned in a residential stove

    Get PDF
    A study has been made of the effect of fuel moisture content on emissions from a wood burning domestic stove. Two fuel types were studied: beech which is a hardwood, and spruce which is a softwood. The moisture contents investigated were for a freshly felled wood, a seasoned wood and a kiln dried wood. The effect of the moisture measurement method was considered using a commercial electrical conductivity probe moisture meter which was compared with laboratory analysis by drying in an oven at 105 °C. It was shown that the probe can significantly underestimate the actual moisture content in certain cases. Correlations were made of the burning rate, the Emission Factors for the formation of gaseous and particulate pollutants as a function of the moisture content. We also studied the ratio of Black Carbon to Total Carbon (BC/TC) to obtain information on the organic content of the particles. The NOₓ emissions from this type of stove were only dependent on the fuel-nitrogen content and not on the moisture content

    Entanglement-free Heisenberg-limited phase estimation

    Get PDF
    Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev's phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio

    Pollutant Emissions from Improved Cookstoves of the type used in Sub-Saharan Africa

    No full text
    Emissions from traditional cookstoves are a major health concern in developing world households. Improved cookstoves can reduce fuel use and pollutant emissions and here we compare three types of improved cookstoves widely used in Sub-Saharan Africa. These are a raised-bed charcoal stove, a rocket-type stove using wood and straw, and a gasifier stove. Laboratory measurements were made of the main gaseous pollutants, particle size distribution and composition. The genotoxicity of the particles was assessed using a comet assay. The rocket-type stove using dry wood had the highest emission factors for particulate matter and NOX. Emissions of CO and CH4 were a factor of 6-7 higher from the charcoal stove compared with the other stoves tested in this work, and also higher for burning high moisture wood. Fuel properties were critical for emitted particle size, and for the emissions of NOX, black carbon and organic matter

    Mixing State of Carbonaceous Aerosols of Primary Emissions from “Improved” African Cookstoves

    Get PDF
    Designs of “improved” stoves are introduced recently to benefit the solid fuel consumption of cooking activities in developing countries, but the uncertainties concerning the combustion processes and particulate emissions remain poorly characterized. To help understand this, combustion in three examples of “improved” African cookstoves was investigated in the laboratory. A typical European heating stove was included for comparison purpose. Detailed aerosol emissions were studied in real-time with an Aerosol Mass Spectrometer and Single Particle Soot Photometer, to explore interactions between black carbon (BC) and organic carbon aerosols, which were parametrized according to modified combustion efficiency (MCE), a common metric used within the atmospheric emission community. Greater than 50% of the total organic matter (OM) was found in BC-containing particles when MCE was >0.95 for dry oak and coal fuels, whereas at lower MCE, over 80% of the total OM for most of the fuels existed in particles without detectable BC. When the OM mass fraction of total particulate matter (PM1) > 0.9, the mass ratio of OM to refractory BC in BC-containing particles was about 2–3, but only ∌0.8 when OM mass fraction <0.9. These findings are not currently included in models and such information should be considered in the future emission scenarios

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders
    corecore