2,042 research outputs found
Atomic layer depostion of TiO2/Al2O3 films for optical applications
Atomic layer deposition (ALD) is an important technology for depositing functional coatings on accessible, reactive surfaces with precise control of thickness and nanostructure. Unlike conventional chemical vapour deposition, where growth rate is dependent on reactant flux, ALD employs sequential surface chemical reactions to saturate a surface with a (sub-) monolayer of reactive compounds such as metal alkoxides or covalent halides, followed by reaction with a second compound such as water to deposit coatings layer-by-layer. A judicious choice of reactants and processing conditions ensures that the reactions are self-limiting, resulting in controlled film growth with excellent conformality to the substrate.
This paper investigates the deposition and characterisation of multi-layer TiO2 /Al2O3 films on a range of substrates, including silicon , soda glass and polycarbonate, using titanium tetrachloride/water and trimethylaluminium/water as precursor couples. Structure-property correlations were established using a suite of analytical tools, including transmission electron microscopy (TEM), secondary ion mass spectrometry (SIMS), X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). The evolution of nanostructure and composition of multi-layer high/low refractive index stacks are discussed as a function of deposition parameters
Ultrasensitive force and displacement detection using trapped ions
The ability to detect extremely small forces is vital for a variety of
disciplines including precision spin-resonance imaging, microscopy, and tests
of fundamental physical phenomena. Current force-detection sensitivity limits
have surpassed 1 (atto ) through coupling of micro or
nanofabricated mechanical resonators to a variety of physical systems including
single-electron transistors, superconducting microwave cavities, and individual
spins. These experiments have allowed for probing studies of a variety of
phenomena, but sensitivity requirements are ever-increasing as new regimes of
physical interactions are considered. Here we show that trapped atomic ions are
exquisitely sensitive force detectors, with a measured sensitivity more than
three orders of magnitude better than existing reports. We demonstrate
detection of forces as small as 174 (yocto ), with a
sensitivity 390 using crystals of Be
ions in a Penning trap. Our technique is based on the excitation of normal
motional modes in an ion trap by externally applied electric fields, detection
via and phase-coherent Doppler velocimetry, which allows for the discrimination
of ion motion with amplitudes on the scale of nanometers. These experimental
results and extracted force-detection sensitivities in the single-ion limit
validate proposals suggesting that trapped atomic ions are capable of detecting
of forces with sensitivity approaching 1 . We anticipate that
this demonstration will be strongly motivational for the development of a new
class of deployable trapped-ion-based sensors, and will permit scientists to
access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to
press embarg
Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems
Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems
Fundamental Strings, Holography, and Nonlinear Superconformal Algebras
We discuss aspects of holography in the AdS_3 \times S^p near string geometry
of a collection of straight fundamental heterotic strings. We use anomalies and
symmetries to determine general features of the dual CFT. The symmetries
suggest the appearance of nonlinear superconformal algebras, and we show how
these arise in the framework of holographic renormalization methods. The
nonlinear algebras imply intricate formulas for the central charge, and we show
that in the bulk these correspond to an infinite series of quantum gravity
corrections. We also makes some comments on the worldsheet sigma-model for
strings on AdS_3\times S^2, which is the holographic dual geometry of parallel
heterotic strings in five dimensions.Comment: 25 page
Symptoms and quality of life in late stage Parkinson syndromes: a longitudinal community study of predictive factors
BACKGROUND
Palliative care is increasingly offered earlier in the cancer trajectory but rarely in Idiopathic Parkinson's Disease(IPD), Progressive Supranuclear Palsy(PSP) or Multiple System Atrophy(MSA). There is little longitudinal data of people with late stage disease to understand levels of need. We aimed to determine how symptoms and quality of life of these patients change over time; and what demographic and clinical factors predicted changes.
METHODS
We recruited 82 patients into a longitudinal study, consenting patients with a diagnosis of IPD, MSA or PSP, stages 3-5 Hoehn and Yahr(H&Y). At baseline and then on up to 3 occasions over one year, we collected self-reported demographic, clinical, symptom, palliative and quality of life data, using Parkinson's specific and generic validated scales, including the Palliative care Outcome Scale (POS). We tested for predictors using multivariable analysis, adjusting for confounders.
FINDINGS
Over two thirds of patients had severe disability, over one third being wheelchair-bound/bedridden. Symptoms were highly prevalent in all conditions - mean (SD) of 10.6(4.0) symptoms. More than 50% of the MSA and PSP patients died over the year. Over the year, half of the patients showed either an upward (worsening, 24/60) or fluctuant (8/60) trajectory for POS and symptoms. The strongest predictors of higher levels of symptoms at the end of follow-up were initial scores on POS (AOR 1.30; 95%CI:1.05-1.60) and being male (AOR 5.18; 95% CI 1.17 to 22.92), both were more predictive than initial H&Y scores.
INTERPRETATION
The findings point to profound and complex mix of non-motor and motor symptoms in patients with late stage IPD, MSA and PSP. Symptoms are not resolved and half of the patients deteriorate. Palliative problems are predictive of future symptoms, suggesting that an early palliative assessment might help screen for those in need of earlier intervention
Risk factors for delayed presentation and referral of symptomatic cancer: Evidence for common cancers
Background:It has been suggested that the known poorer survival from cancer in the United Kingdom, compared with other European countries, can be attributed to more advanced cancer stage at presentation. There is, therefore, a need to understand the diagnostic process, and to ascertain the risk factors for increased time to presentation.Methods:We report the results from two worldwide systematic reviews of the literature on patient-mediated and practitioner-mediated delays, identifying the factors that may influence these.Results:Across cancer sites, non-recognition of symptom seriousness is the main patient-mediated factor resulting in increased time to presentation. There is strong evidence of an association between older age and patient delay for breast cancer, between lower socio-economic status and delay for upper gastrointestinal and urological cancers and between lower education level and delay for breast and colorectal cancers. Fear of cancer is a contributor to delayed presentation, while sanctioning of help seeking by others can be a powerful mediator of reduced time to presentation. For practitioner delay, ‘misdiagnosis’ occurring either through treating patients symptomatically or relating symptoms to a health problem other than cancer, was an important theme across cancer sites. For some cancers, this could also be linked to inadequate patient examination, use of inappropriate tests or failing to follow-up negative or inconclusive test results.Conclusion:Having sought help for potential cancer symptoms, it is therefore important that practitioners recognise these symptoms, and examine, investigate and refer appropriately. © 2009 Cancer Research UK All rights reserved
The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin
Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition
Image Texture Characterization Using the Discrete Orthonormal S-Transform
We present a new efficient approach for characterizing image texture based on a recently published discrete, orthonormal space-frequency transform known as the DOST. We develop a frequency-domain implementation of the DOST in two dimensions for the case of dyadic frequency sampling. Then, we describe a rapid and efficient approach to obtain local spatial frequency information for an image and show that this information can be used to characterize the horizontal and vertical frequency patterns in synthetic images. Finally, we demonstrate that DOST components can be combined to obtain a rotationally invariant set of texture features that can accurately classify a series of texture patterns. The DOST provides the computational efficiency and multi-scale information of wavelet transforms, while providing texture features in terms of Fourier frequencies. It outperforms leading wavelet-based texture analysis methods
Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.
BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice
G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial
Background: The hematopoietic protein Granulocyte-colony stimulating factor (G-CSF) has neuroprotective and regenerative properties. The G-CSF receptor is expressed by motoneurons, and G-CSF protects cultured motoneuronal cells from apoptosis. It therefore appears as an attractive and feasible drug candidate for the treatment of amyotrophic lateral sclerosis (ALS). The current pilot study was performed to determine whether treatment with G-CSF in ALS patients is feasible.Methods: Ten patients with definite ALS were entered into a double-blind, placebo-controlled, randomized trial. Patients received either 10 mu g/kg BW G-CSF or placebo subcutaneously for the first 10 days and from day 20 to 25 of the study. Clinical outcome was assessed by changes in the ALS functional rating scale (ALSFRS), a comprehensive neuropsychological test battery, and by examining hand activities of daily living over the course of the study (100 days). The total number of adverse events (AE) and treatment-related AEs, discontinuation due to treatment-related AEs, laboratory parameters including leukocyte, erythrocyte, and platelet count, as well as vital signs were examined as safety endpoints. Furthermore, we explored potential effects of G-CSF on structural cerebral abnormalities on the basis of voxel-wise statistics of Diffusion Tensor Imaging (DTI), brain volumetry, and voxel-based morphometry.Results: Treatment was well-tolerated. No significant differences were found between groups in clinical tests and brain volumetry from baseline to day 100. However, DTI analysis revealed significant reductions of fractional anisotropy (FA) encompassing diffuse areas of the brain when patients were compared to controls. On longitudinal analysis, the placebo group showed significant greater and more widespread decline in FA than the ALS patients treated with G-CSF.Conclusions: Subcutaneous G-CSF treatment in ALS patients appears as feasible approach. Although exploratory analysis of clinical data showed no significant effect, DTI measurements suggest that the widespread and progressive microstructural neural damage in ALS can be modulated by G-CSF treatment. These findings may carry significant implications for further clinical trials on ALS using growth factors
- …