5 research outputs found
A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps
Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite missions dedicated to measuring AGB. Objective and consistent methods to estimate the accuracy and uncertainty of AGB maps are therefore urgently needed. This paper develops and demonstrates a framework aimed at achieving this. The framework provides a means to compare AGB maps with AGB estimates from a global collection of National Forest Inventories and research plots that accounts for the uncertainty of plot AGB errors. This uncertainty depends strongly on plot size, and is dominated by the combined errors from tree measurements and allometric models (inter-quartile range of their standard deviation (SD) = 30–151 Mg ha−1). Estimates of sampling errors are also important, especially in the most common case where plots are smaller than map pixels (SD = 16–44 Mg ha−1). Plot uncertainty estimates are used to calculate the minimum-variance linear unbiased estimates of the mean forest AGB when averaged to 0.1∘. These are used to assess four AGB maps: Baccini (2000), GEOCARBON (2008), GlobBiomass (2010) and CCI Biomass (2017). Map bias, estimated using the differences between the plot and 0.1∘ map averages, is modelled using random forest regression driven by variables shown to affect the map estimates. The bias model is particularly sensitive to the map estimate of AGB and tree cover, and exhibits strong regional biases. Variograms indicate that AGB map errors have map-specific spatial correlation up to a range of 50–104 km, which increases the variance of spatially aggregated AGB map estimates compared to when pixel errors are independent. After bias adjustment, total pantropical AGB and its associated SD are derived for the four map epochs. This total becomes closer to the value estimated by the Forest Resources Assessment after every epoch and shows a similar decrease. The framework is applicable to both local and global-scale analysis, and is available at https://github.com/arnanaraza/PlotToMap. Our study therefore constitutes a major step towards improved AGB map validation and improvement
Uncertainty in the spatial distribution of tropical forest biomass:a comparison of pan-tropical maps
BACKGROUND: Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m – 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO’s Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. RESULTS: We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. CONCLUSIONS: Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial pattern of forest cover change, rather than to total globally or nationally summed carbon density
Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests
For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0-7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps
Recommended from our members
A new circa 2007 biomass map for China differs significantly from existing maps.
Acknowledgements: Edward Mitchard’s time was part funded by NERC grant SEOSAW (Grant number NE/P008755/1). The field work was supported by Davis Expedition Fund, Elizabeth Sinclair Irvine Bequest and Centenary Agroforestry 89 Fund, Moray Endowment Fund and Meiklejohn fund. We acknowledge all the co-authors of the three forest AGB maps for providing maps and allowing us to use and compare these datasets. We also acknowledge Michael A. Lefsky for providing Lorey’s height dataset derived from GLAS. We would also like to thank JAXA, USGS and NSTI for providing ALOS PALSAR annual mosaic data, Landsat-5 data online and field data collected from 2005 to 2015.Funder: Davis Expedition Fund, Elizabeth Sinclair Irvine Bequest and Centenary Agroforestry 89 Fund, Moray Endowment Fund, Meiklejohn fund.The forest area of China is the fifth largest of any country, and unlike in many other countries, in recent decades its area has been increasing. However, there are substantial differences in estimates of the amount of carbon this forest contains, ranging from 3.92 to 17.02 Pg C for circa 2007. This makes it unclear how the changes in China's forest area contribute to the global carbon cycle. We generate a circa 2007 aboveground biomass (AGB) map at a resolution of 50 m using optical, radar and LiDAR satellite data. Our estimates of total carbon stored in the forest in China was 9.52 Pg C, with an average forest AGB of 104 Mg ha-1. Compared with three existing AGB maps, our AGB map showed better correlation with a distributed set of forest inventory plots. In addition, our high resolution AGB map provided more details on spatial distribution of forest AGB, and is likely to help understand the carbon storage changes in China's forest
A new data-driven map predicts substantial undocumented peatland areas in Amazonia
Abstract
Tropical peatlands are among the most carbon-dense terrestrial ecosystems yet recorded. Collectively, they comprise a large but highly uncertain reservoir of the global carbon cycle, with wide-ranging estimates of their global area (441 025–1700 000 km2) and below-ground carbon storage (105–288 Pg C). Substantial gaps remain in our understanding of peatland distribution in some key regions, including most of tropical South America. Here we compile 2413 ground reference points in and around Amazonian peatlands and use them alongside a stack of remote sensing products in a random forest model to generate the first field-data-driven model of peatland distribution across the Amazon basin. Our model predicts a total Amazonian peatland extent of 251 015 km2 (95th percentile confidence interval: 128 671–373 359), greater than that of the Congo basin, but around 30% smaller than a recent model-derived estimate of peatland area across Amazonia. The model performs relatively well against point observations but spatial gaps in the ground reference dataset mean that model uncertainty remains high, particularly in parts of Brazil and Bolivia. For example, we predict significant peatland areas in northern Peru with relatively high confidence, while peatland areas in the Rio Negro basin and adjacent south-western Orinoco basin which have previously been predicted to hold Campinarana or white sand forests, are predicted with greater uncertainty. Similarly, we predict large areas of peatlands in Bolivia, surprisingly given the strong climatic seasonality found over most of the country. Very little field data exists with which to quantitatively assess the accuracy of our map in these regions. Data gaps such as these should be a high priority for new field sampling. This new map can facilitate future research into the vulnerability of peatlands to climate change and anthropogenic impacts, which is likely to vary spatially across the Amazon basin.</jats:p