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Abstract

Background: Mapping the aboveground biomass of tropical forests is essential both for implementing
conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m – 1000 m)
pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national
and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+).
Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic
forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial
modelling methodologies. Here, we compare these two maps to each other, to the FAO’s Forest Resource
Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of
the Colombian Amazon.

Results: We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin,
the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South
America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the
country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When
comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the
FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the
independent high resolution map, but show a similar spatial distribution of this biomass.

Conclusions: Biomass mapping has progressed enormously over the past decade, to the stage where we can
produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these
maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to
converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we
believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial
pattern of forest cover change, rather than to total globally or nationally summed carbon density.
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Background
The clearing of tropical forests and their conversion to
other land uses has resulted in gross emissions of 0.45 –
1.7 Pg C year-1 (90% prediction interval) from 2000–
2007, equivalent to 5-19% of global anthropogenic CO2

emissions [1-3]. Intact tropical forests are, however,
thought to be serving as a carbon sink of similar magni-
tude, capturing an estimated 0.55-1.49 Pg C year-1, equiva-
lent to 6-17% of anthropogenic CO2 emissions, over the
same period [2]. While there are many other reasons to
protect tropical forests, the preservation of their carbon
stocks and their potential as a future carbon sink has mo-
tivated a policy priority among the international commu-
nity for their protection in order to reduce greenhouse gas
(GHG) emissions, with associated benefits to society pro-
vided by their ecosystem services [4].
Many different schemes have been pursued to conserve

tropical forests, but all rely on the quantification of stored
carbon stocks to allow a calculation of avoided GHG emi-
ssions. The UN Framework Convention on Climate
Change (UNFCCC) initiative “Reducing Emissions from
Deforestation and forest Degradation” (REDD+, [5]) may
create both social and economic incentives for conserva-
tion of forests in tropical countries. At an international
level, REDD+ remains in negotiation within the UNFCCC,
with the goal to include REDD+ in the next global climate
change agreement. However, pilot and preparatory activ-
ities are already occurring at a national level, largely
funded by UN-REDD (a consortium of the FAO, UN and
UNEP), the Forest Carbon Partnership Facility (World
Bank), and individual governments, especially Norway [6].
Parallel to the main REDD+ process, Norway has set up
bilateral deals with Brazil, Guyana, Indonesia and Tanzania
that allow for the transfer of up to US$1 billion for con-
servation and development, in return for the countries
meeting targets for reducing deforestation rates [7]. Fur-
thermore there are already many voluntary REDD+ pro-
jects, generating credits primarily under the Verified
Carbon Standard (VCS), with total REDD+ credit sales
equal to $85 million in 2010 [8]. These projects are in-
creasing in number, meaning that there is already some
implementation of REDD+ in many tropical forest regions.
Under the UNFCCC, countries planning to participate

in the REDD+ mechanisms are required to use the Inter-
governmental Panel on Climate Change (IPCC) GHG ac-
counting framework for estimating their anthropogenic
emissions caused by deforestation and forest degradation
[9]. One of the key inputs into the IPCC framework is the
carbon stocks of the forests undergoing change. The differ-
ence between the pre- and post- deforestation or degrad-
ation carbon stocks is the ‘emission factor’, which is the
carbon emissions per unit area due to forest cover change.
The product of the emission factor and the area of forest
change provides the estimate of the total carbon emissions.
Countries participating in a future UNFCCC agree-
ment will likely need to assess and monitor their carbon
stocks regardless of their inclusion in REDD+. One ap-
proach often followed to obtain carbon stock estimates
is to map vegetation types within a landscape and assign
a carbon density value to each vegetation type, using ei-
ther international or locally-derived values from field-
based inventory [9]. However this method can have high
uncertainty, especially over large areas or when using
generic carbon density values, so to maximise potential
financial benefits countries may opt to produce spatial
maps of their biomass stocks, using field-calibrated re-
mote sensing observations. No current satellite can dir-
ectly estimate aboveground biomass (AGB), so proxies
related to forest canopy colour, seasonality parameters,
elevation, or the canopy structure are used to estimate
and spatially model AGB [10-14].
Two recent maps have been published using this ap-

proach to estimate biomass across the tropics at a 1 km
resolution [15], subsequently described as ‘RS1’, and a
463 m resolution [16], ‘RS2’. These resolutions are con-
sidered high enough to be used by carbon forestry pro-
jects [9]. Both maps use spaceborne LiDAR data from
the Geoscience Laser Altimeter System (GLAS) as sam-
ples of forest structure distributed across the tropics, but
the two approaches use a different method to extend the
isolated GLAS footprints to full-coverage AGB maps.
The differences can be summarized as follows:

i) GLAS datasets: Both studies independently
downloaded, processed and filtered the GLAS
dataset for cloud and slope effects and other
potential artefacts. In RS1, filters were introduced to
remove all GLAS shots over slopes > 20% and
ground elevations with > 100 m difference from a
global digital elevation model, the Shuttle Radar
Topography Mission (SRTM) data at 90 m
resolution; in RS2, the filter removed all GLAS shots
that differed from SRTM elevation by > 25 m. In both
cases this was done because forest height estimates
over sloped terrains may have large biases, causing
overestimation of the estimated tree height. Both
methods included a series of filters based on the shape
of the waveform and the signal-to-noise ratio.

ii) Estimating AGB from GLAS using field plots:
Field plots are used to convert millions of individual
LiDAR waveforms collected by the GLAS sensor
with an approximately 65 m footprint into AGB
estimates. RS1 uses a two-stage process, first building
a model to predict Lorey’s height (basal-area weighted
height) from the LiDAR waveforms using 295 field
plots located under GLAS footprints in South
America [17], and then deriving three separate
continental equations relating Lorey’s height to AGB
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using a set of 493 field plots [15]. The AGB values for
the field plots are derived from the 3-parameter
tropical forest allometric equations including tree
diameter, wood density, and height from [18]. The
field plots were distributed over three continents, had
sizes ranging from 0.2 to 1.0 ha, with the majority of
plots being at least 0.25 ha, and included all trees > 10
cm in diameter measured above buttresses.
RS2 instead builds a model directly relating GLAS
waveform characteristics to AGB from 283
calibration field plots located under GLAS footprints
[16]. The plots are 40 m × 40 m (0.16 ha) in size and
include all trees > 5 cm in DBH. Unlike RS1, in RS2,
the field data are converted to AGB using allometric
equations without tree height from the same study
[18]: RS1 uses the 3-parameter equation, whereas
RS2 uses the 2-parameter equation, including
diameter and wood density but excluding height.
The conversion of the GLAS data to AGB in both
approaches ignores the potential variations of forest
wood density over the landscape and at regional
scales: while biomass estimation of the plot data for
both maps was based on equations that included
wood density as one of the independent variables,
the functions that related the GLAS data to the
plot-based biomass estimates did not include any
parameter to reflect the spatial variability of wood
density.

iii) Creation of training and test datasets from
GLAS: For RS1, GLAS AGB estimates are only used
in creating the map if at least 5 LiDAR footprints fall
within the same 1 km pixel; this gave 160,918 pixels
(with the AGB estimate for each the average of at
least 5 LiDAR footprints) for use in training and
testing the AGB prediction model. For RS2 GLAS
AGB estimates were used if more than 5 footprints
were located in a 463 m pixel for America and
Africa, and 3 or more for Asia, giving 58,476 pixels
available for training and testing.

iv)Additional training dataset from field plots:
Additionally for RS1 4,079 field plots were included
in the model although, as these were clustered, they
were averaged if multiple plots occurred within the
same 1 km pixel, reducing the total to 1,877 pixels.
No field dataset was used directly for training or
testing of RS2.

v) Creating continuous AGB maps: The point AGB
estimates were averaged to give single AGB
estimates at the pixel level, then extrapolated across
the full pantropics using visible- and infra-red
spectrum optical data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors,
elevation data from SRTM, and in the case of RS1,
QUIKSCAT scatterometer data. The precise MODIS
data layers used and cloud filtering applied differ
considerably between the studies, with RS1 using
Leaf Area Index (LAI) and the Normalised
Difference Vegetation Index (NDVI), and RS2 using
all the land bands excluding the blue band from the
Nadir Bidirectional Reflectance Distribution
Function-Adjusted Reflectance (BRDF), the
Enhanced Vegetation Index (EVI2), the Normalized
Difference Infrared Index (NDII2), and the MODIS
Land Surface Temperature products. The
extrapolation of biomass is performed using non-
linear, non-parametric models, Maxent in RS1 and
Random Forest in RS2, with in both cases a
percentage of input data held back for testing (40%
for RS1, 10% for RS2).

vi)Uncertainty estimates: RS1 additionally produced a
spatial uncertainty map, giving an error estimate for
every pixel, through bootstrapping the input ground
and LiDAR datasets and propagating errors through
the model. RS2 estimated uncertainty at the dataset
and country level using a Monte Carlo approach.

Here we present a detailed comparison of the outputs
of both maps, both directly at the pixel level, and in ag-
gregate over different landcover type classes and coun-
tries. However, while comparisons between the maps are
interesting, they are of limited use in either confirming
the validity of the mapping approach, or stating whether
one map should be used preferentially to the other. We
cannot use comparisons to field plots to provide these
assessments for two reasons: first, the vast majority of
well-geolocated recent scientific field plots known to the
authors were used in one or other of the maps; and sec-
ond, all field plots are very much smaller than the pixel
size of the maps, and thus only useful in showing if there
is large divergence between the maps and ground data,
not in providing a quantitative accuracy assessment [19].
We therefore compare the maps to two entirely inde-
pendent, large-scale ancillary AGB datasets: the country
biomass stocks from the FAO Forest Resource Assessment
(FRA) estimates [20], and a high resolution (100 m)
LiDAR-derived map for a 16.5 million hectare region of
the Colombian Amazon (RS3) [21].

Results and discussion
Direct comparison of the pantropical biomass maps
Summing the RS1 and RS2 maps by continent gives
similar mean and total values (Table 1), with the RS1
carbon stock estimates across the tropics about 10%
lower than RS2, driven mostly by an 18% difference in
tropical Latin America. However, much more dramatic
differences are seen when the two maps are compared
visually (Figure 1). Absolute differences are most pro-
nounced over tropical forest areas: RS1 estimates are



Table 1 Mean and total biomass stocks by continent

Continent RS1 [15] RS2 [16] Area compared

Mean Total Mean Total (km2)

(Mg ha-1) (PgC) (Mg ha-1) (PgC)

Africa 50.8 56.2 58.4 64.5 22,105,436

Americas 129.8 95.5 158.1 116.3 14,713,658

Asia 160.2 51.7 144.9 46.8 6,457,241

Pan-tropics 94.0 203.4 105.2 227.6 43,276,334 km2

Mg ha-1 PgC Mg ha-1 PgC

Comparison of the mean and total aboveground biomass (AGB) stocks
estimated for continental regions covered by the two maps. See Figure 1 for
areas compared: these do not include whole continents but only extend from
the Tropic of Cancer to the Tropic of Capricorn. Many areas mapped in RS1
(including Australia, southern Latin American and southern Africa) are not
included in RS2, and are thus excluded from the above table. Water bodies
are excluded.

b) RS2: Baccini et al. (2012)

a) RS1: Saatchi et al. (2011)

c) Absolute Difference (RS2 –RS1)

d) Percent Difference

Figure 1 A comparison of two remote sensing based maps of aboveg
b) AGB for RS2 [16]; c) absolute difference, RS2-RS1; d) the percent di
area projection.
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considerably lower in the central and western Amazon,
central and eastern Congo basin, and southern Papua
New Guinea, whereas conversely RS2 has lower esti-
mates in the south-eastern Amazon, the western Congo
basin, and parts of South-East Asia. Large differences
are also visible over woodland and savanna vegetation,
but with more consistency: in general RS2 estimates are
higher than RS1 in mid- and low- biomass vegetation
(with some exceptions, e.g. Kenya and Ethiopia).
Comparing histograms of the biomass distributions

shows that the differences are not consistent between con-
tinents (Figure 2). In Latin America both RS1 and RS2
have clear bimodal distributions, but the distributions dif-
fer markedly between the two datasets. Both peaks are off-
set to lower values for RS1 compared to RS2, with the
savanna (cerrado) peak dominated by values between 10
-150 -100 -50 0 +50 +100 +150
AGB (Mgha-1)

AGB (Mgha-1)
0 100 200 300 400 500

AGB (Mgha-1)
0 100 200 300 400 500

-200% -100% 0 +100% +200% 

round biomass (AGB) across the tropics: a) AGB for RS1 [15];
fference between RS2 and RS1. The projection is sinusoidal, an equal
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Figure 2 Histograms showing aboveground biomass (AGB) distributions of RS1 and RS2, in 10 Mg ha-1 bins, for the tropical regions of
a) Latin America; b) Africa; and c) Asia.
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Figure 3 Mean aboveground biomass (AGB) of vegetation
classes from the Global Land Cover 2000 dataset [34], split by
continents, between RS1 and RS2. The full data are included in
Additional file 1: Table S1.
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and 50 Mg ha-1 in RS1 and 30–100 Mg ha-1 in RS2, and
the tropical forest peak centred around 240 Mg ha-1 in
RS1 and 310 Mg ha-1 in RS2. The distributions for Africa
are closer to negative-J distributions, with the dominance
of grassland and savanna resulting in a much higher fre-
quency of low biomass classes than high biomass classes.
However the differences between RS1 and RS2 in Africa
are consistent with those in Latin America: once again
there is bimodality, and in both cases the peaks are shifted
to the left in RS1 compared to RS2. The rainforest peaks
are more similar to each other in Africa than in South
America, with the clearest difference being the much
higher frequency of 90 to 170 Mg ha-1 in RS2 than RS1.
The picture is different again in Asia, with biomass
appearing to be trimodally distributed in both datasets. In
Asia, in contrast to the others, there is evidence that the
lowest biomass peak is shifted towards higher biomass
values in RS1 compared to RS2, though it may be that this
peak occupies a wider range in RS2; the intermediate peak
has higher values in RS2 than RS1 throughout; and the
high biomass peak has a similar shape and position in
both distributions.

Comparison by vegetation class
Subsetting the biomass distribution using a vegetation
map shows that differences are not consistent among clas-
ses or continents (Figure 3, Additional file 1: Table S1).
There are no large outliers, with no points particularly far
from the 1:1 line, but in general again RS1 < RS2 in Africa
and Latin America, and RS1 > RS2 in Asia. Looking across
the dataset the largest absolute differences are in the
“Deciduous broadleaved closed forest”, “Needle-leaved
evergreen forest”, “Regularly flooded shrub” and “Closed-
open evergreen shrub” classes, all of which differ by
greater than 34 Mg ha-1. Some important classes, for ex-
ample “Broadleaved evergreen forest”, differ in the sign of
their difference between continents: RS1 is smaller than
RS2 by 18.7 Mg ha-1 and 30.4 Mg ha-1 in Africa and Latin
America respectively, but greater in Asia by 15.8 Mg ha-1.
This is a relatively consistent pattern, with 5 of 15 classes
having RS1 < RS2 in African and Latin America, but RS2 >
RS1 in Asia.
We find no obvious link between the different spatial

distribution of field training plots used in the two data-
sets (which are mostly located in intact tropical forest,
with some located in tropical savanna woodland) and
the degree of difference between the corresponding
vegetation classes. For example there is a large difference
in the class best sampled in both datasets (“Tree cover,
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broadleaved, evergreen”), and a comparatively small dif-
ference for “Tree Cover, regularly flooded, saline water”,
a class which was not included in the LiDAR calibration
datasets of either map, and that is known to have a dis-
tinct vegetation structure.

Comparison by country total
Comparisons at a country level show much greater levels
of agreement between the maps (Figure 4a-b, Additional
file 2: Table S2). In terms of the total biomass for a
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tical across both maps. However, more surprisingly, there
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significantly lower AGB than RS2. However, the r-squared
values for the RMA regression lines were 0.97 for total
country stocks and 0.91 for mean values, suggesting that
there is a strong positive relationship between the datasets.
There were some significant outlier countries however, for
example Haiti, Gambia and Botswana were estimated as
containing 80%, 76% and 60% more carbon using RS2 than
RS1, whereas by contrast East Timor, Kenya and Equatorial
Guinea are estimated as containing 49%, 47% and 42%
more biomass in RS1 than RS2 (Additional file 2: Table S2).
Another way to look at this dataset is to calculate the Root
Mean Squared Error (RMSE) in mean carbon stocks be-
tween the countries; this value is 23.1 Mg ha-1 when com-
paring RS1 and RS2 for the 92 countries (Table 2).
While the differences in total biomass for some coun-

tries are still very significant, for the majority the two
maps agree very well: the mean absolute percentage dif-
ference between the two estimates is 12.6%, and the me-
dian 8.7%. It seems that the large differences seen in
some vegetation classes tend to average out to a certain
extent across a country.

Reasons for differences between the biomass maps
There are many potential explanations for the differ-
ences between these maps, but we here highlight the five
we believe are the most likely to be responsible:

i) The lower estimates found on average in RS1 over
RS2 are most likely to be caused by the different
allometric equations used to estimate biomass from
the ground plots. Though the equations used in
both studies came from the same study [18], RS1
used the 3-parameter models involving height as
well as diameter and wood density, where RS2 used
the 2-parameter models involving diameter and
wood density only. Using a non-varying diameter to
tree height allometry has been shown to cause a
10-20% overestimate in total biomass, [22]. This also
explains the continental differences, as the
overestimation using a 2-parameter equation should
be strongest in South America, which has the
shortest trees, and weakest or reversed in SE Asia,
Table 2 Comparison of mean biomass stocks and RMSE values

Continent Mean country AGB

RS1 RS2 FRA2010 RS1 vs R

(Mg ha-1) (Mg ha-1) (Mg ha-1) (Mg ha

Africa 68.9 74.2 83.4 25.0

Americas 113.8 130.2 99.0 20.8

Asia 157.1 142.2 99.0 27.5

Pantropics 100.5 106.1 91.0 24.1

Comparison of mean aboveground biomass (AGB) and Root Mean Square Error (RMSE
complete coverage in both RS1 and RS2. Country-level data available in Additional file
which has the tallest trees; this is exactly what is seen
in our comparison (Table 1). The average biomass
estimates for the 3-parameter model are about 66
Mg ha-1 lower than the 2-parameter model over
intact Amazonian forest, approximately the same
magnitude observed in differences between the two
maps in various regions of Amazonia [22]. Although
the allometry may introduce a bias between the two
maps, the magnitude of bias will have spatial patterns
depending on forest types and regional differences in
forest structure and allometry [22].

ii) The methodology used in processing and filtering
the GLAS LiDAR data may have caused some
differences in the height values used in training the
spatial modelling of biomass. In both cases GLAS
data were filtered if they differed significantly from
the SRTM dataset, but only in RS1 were the data
filtered based on slope and signal-to-noise ratio. In
both cases pixels were only used for training if at
least five GLAS footprints were located within them,
and the AGB values from the GLAS footprints were
averaged (except for RS2 in SE Asia, where the
criteria was relaxed to greater than or equal to three
footprints); this averaging process will reduce noise
and to a certain extent smooth out differences in
processing, but residual biases from this process
could be carried through into the maps.

iii)Different data layers were used to extrapolate the two
datasets. RS1 used QUIKSCAT radar data in addition
to layers similar to those used in RS2, whereas RS2
was driven primarily by MODIS and topography
data. Equally RS2 used bidirectionally corrected
reflectance (BRDF), EVI2, NII2 and Land Surface
Temperate MODIS layers, whereas RS1 used the
seasonal LAI and NDVI MODIS layers. These layers
contain different spatial information, and thus despite
the use of similar GLAS data, it is likely that these
differences changed the spatial patterns in the derived
products. Note that none of the data layers used to
capture the variations of forest biomass are sensitive
to the range of biomass values found in tropical
forests and often saturate at low biomass values.
for countries by continent

RMSE for country mean AGB Number
countries
compared

S2 RS1 vs FRA2010 RS2 vs FRA2010

-1) (Mg ha-1) (Mg ha-1)

54.8 44.3 37

50.4 63.5 28

102.4 85.7 14

65.0 59.7 79

) between estimates at a country level, using only countries where there is
2: Table S2.
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iv)Different modelling environments were used to
extrapolate the LiDAR-derived training data: Maxent
in RS1, and Random Forest in RS2. Random Forest is
widely used across a wide range of fields for
classification and regression, and its bias and error
characteristics are well understood [23,24]. Maxent
is also widely used, especially for classification and
species distribution modelling [25], though it is less
commonly used, and therefore less well understood,
for modelling continuous variables such as AGB. It
is likely that this choice of algorithm explains some
of the differences in spatial patterns. Both models
are considered nonparametric and depend strongly
on the statistical approach that optimizes the
extrapolation of the training data when the
sensitivity of image data layers to biomass is low. In
general, Random Forest performs better in capturing
the mean statistics of the training data, but may
suffer from overfitting the training data: as a sign of
this Random Forest tends to produce considerably
higher accuracies against training than test data.
Maxent, on the other hand, works with probabilities
of estimating a class of biomass range, and thus does
not necessarily produce a result with a similar mean
to the input data, but should produce predictions
without overfitting. This leads to Maxent producing
estimates with similar errors in both training and
independent test data, though these errors may be
large. In the absence of any global satellite
observation of forest structure and biomass all
extrapolations will be a compromise between
accuracy and overfitting, and only more independent
verification datasets will allow for selection of the
‘best’ model.

v) Due to mixed input layers neither map is truly a
single date product, nevertheless dates of the two
maps differ: RS1 is dated ‘early 2000’s’, and RS2
‘2007’. There has been significant land use change
across the tropics over this period [3], so it is
possible that some of the differences seen could be
due to land-use change. However, this cannot
explain the large differences in relatively undisturbed
areas, for example central Amazonia, nor the many
areas where RS1 is greater than RS2.

vi) Some additional differences could be due to the
different pixel sizes used: 463 m (RS2) vs. 1 km
(RS1). Larger pixel sizes result in a smaller range of
biomass values, due to spatial averaging, and the
exclusion of very high biomass values due to
landscape heterogeneity. This difference should be
especially apparent in the histogram comparisons:
RS2 should have a wider distribution than RS1, all
else being equal, simply because its input pixel size
is a quarter of that of RS1. We performed the
analysis at the higher resolution, that of RS2, in
order to avoid introducing artefacts by changing
pixel values in either dataset. However, as a test, we
also reduced the resolution of RS2 to that of RS1
and produced histograms to see if this could be part
of the cause of the difference. The histogram results
were nearly identical, with the size of every bar
within 2% of the size at full resolution, so while
resolution could be a factor in the differences
observed, it is not the main cause.

Comparison with FAO 2010 Forest Resource Assessment
There is less convergence when comparing the RS1 and
RS2 maps to the FRA 2010 estimates than to each other
(Figure 4c-d, Table 2, Additional file 2: Table S2). The
RMSE values for the comparison of the mean country
totals of each map with the corresponding values from
the FRA dataset are 2–3 times higher than the compari-
sons directly between the two maps (Table 2). This is
not surprising given the very different methodologies
used, and the limited capacity of many tropical countries
to perform such assessments [26]. However, there is still
a significant positive relationship for the mean estimates,
and the country totals are remarkably close, particularly
for large countries (Figure 4c).
In general the remote sensing maps estimate higher

mean AGB values than the FAO values. This is surpris-
ing, as the FAO values are reported for forest areas only
(the FAO forest definition includes lands with >10%
crown cover and also includes plantations), whereas the
estimates based on RS1 and RS2 include all land, includ-
ing that not officially classed as ‘forest’. The exception to
this is Africa where in general FRA 2010 estimates are
higher than either RS1 or RS2 (Table 2, Additional file 2:
Table S2). This is probably due to the larger proportion
of non-forest vegetation in these countries, which brings
down the average for the RS layers but is ignored by the
FRA 2010. This is supported by lack of bias in the total
country stocks.

Comparison with a high resolution airborne LiDAR map
of Colombia
We compared the pantropical RS maps (RS1 and RS2)
to a recently published AGB map of 165,000 km2 of
Colombia (RS3), derived from field-plot calibrated air-
craft LiDAR for 2.8% of the area extrapolated to the re-
gion through stratification using optical satellite data,
historical forest-change data, and a digital terrain model
[21]. RS3 is expected to have high accuracy (±28% for
any given 1 ha pixel) due to its reliance on locally-
calibrated high resolution LiDAR data. There are large
differences visible between the maps when compared
visually (Figure 5), though the broad distribution of bio-
mass is preserved: RS3 has lower estimates throughout
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the region, and in particular much lower in the higher
elevation areas in the north. The total aboveground car-
bon stocks differ considerably: RS1 estimates stocks 23%
higher than RS3, and RS2 42% higher (Table 3).
When comparing the histograms (Figure 6) a more

complex picture appears. There appears to be a very
close match between RS1 and RS3, with the high bio-
mass peak for RS2 offset approximately 90 Mg ha-1 to
the right (similar to Figure 2a comparing RS1 and RS2
for Latin America). However both RS1 and RS2 extend
to higher values than RS3: the highest value for RS3 is
283.3 Mg ha-1, whereas it is 435.7 Mg ha-1 and 387.0 Mg
ha-1 for RS1 and RS2 respectively. It is this lack of high
values and low estimates in the mountainous regions
that explain the low total carbon stock value for RS3.
These biomass differences can be explained by a com-

bination of six different factors.

i) RS3 uses the same allometry as RS1, whereas RS2
uses an allometry excluding height that results in an
overestimate of total AGB by 10-20% [22].
Table 3 Mean and total biomass stocks for a 16 million
hectare subset of the Colombian Amazon

Layer Biomass stocks

Mean (Mg ha-1) Total (PgC)

RS1 [15] 218.1 1.806

RS2 [16] 252.0 2.087

RS3 [21] 183.4 1.473

Comparison of the mean and total biomass stocks for a 16,561,695 ha area of
the Colombian Amazon mapped in detail at high resolution (100 m) by RS3.
ii) Wood density: RS3 uses local wood density, whereas
RS1 effectively uses South America mean wood
density information (contained within its continental
Lorey’s height to AGB relationship), and RS2 uses a
mean wood density information across the tropics,
contained within the allometries in training data used
to develop its pantropical GLAS to AGB relationship.
Thus the lower AGB values in RS3 could be due to
especially low wood density in this area.

iii)The relationship between tree diameter and height
varies with elevation, soil fertility and geographic
location: all three maps treat DBH-height equations
differently, with effectively a single equation used for all
of South America in RS1 due to the use of a single
Lorey’s height to AGB equation, a single equation for
the whole tropics in RS2 due to the use of an
allometric equation that does not include height, and a
locally-derived equation for RS3. If trees in this region
are comparatively short for their diameter, as suggested
by the data in [21], then that would explain the lower
AGB estimate for RS3 compared to the other datasets.

iv)Different dates: there may have been significant
deforestation in between the creation of the
pantropical maps, which have nominal dates of
‘early 2000’s’ (RS1) and approximately 2007 (RS2),
and the RS3 acquisition in 2011.

v) The different resolutions of the three studies, in
particular the much higher 100 m resolution of RS3,
could be influencing the results. It is known that forest
biomass scales in a complex manner with resolution,
even in a non-heterogeneous landscape [27].
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vi) Errors in the extrapolation procedure between
LiDAR flight paths and the wider region in RS3, in
particular the prediction of low biomass values at
high elevation areas in the north, and the lack of
high biomass values in the densest forest areas,
could be erroneous. This final possibility is
supported as an alternative map produced in the
same study using the same input data but a different
spatial extrapolation technique (regression with
elevation and the fractional cover of photosynthetic
vegetation, rather than a stratification with the same
variables plus vegetation history and terrain
ruggedness) predicts much higher biomass values in
the northern, high elevation areas; and that the field
data used to calibrate the LiDAR regression equation
has plots with biomass values above 300 Mg ha-1, but
no pixels in the resulting map exceed 283.3 Mg ha-1.

Thus though RS3 provides an independent test of the
pantropical maps, and the comparison is interesting,
there are too many uncertainties involved for it to pro-
vide validation of one map over the other.

Conclusions
We found that RS1 and RS2 differ significantly in their
AGB estimates over a wide variety of forest cover types
and scales; however at country level there is general agree-
ment, with much of the country-level difference explained
by the choice of different allometric equations. This has
an important implication for REDD+ — it appears we
have the algorithms and tools to estimate biomass stocks
with some certainty, and the largest uncertainties in
setting up deforestation baselines relate to forest cover
changes (rates of deforestation/degradation) [3,28].
When summed to a regional scale, RS2 estimates on

average higher biomass values than RS1. This is almost
certainly due to the different choice of allometric equa-
tions, with the 2-parameter equations excluding height
used in RS2 known to consistently estimate higher bio-
mass values than the 3-parameter equations including
height used by RS1 [22]. Further differences between the
layers could be due to a variety of factors, including their
different ground and remote sensing input data, different
modelling environments, and different pixel sizes. It is
also clear from comparison to a high resolution, locally
calibrated map (RS3) that a further limitation present in
both studies is the lack of local wood density or diameter-
height calibration. Both are known to vary considerably
across the landscape [22,29] but the use of a single (RS2)
or three continental (RS1) equations relating GLAS
LiDAR footprints to AGB smooths out these variations.
All three remote sensing maps compared here actually

use a very similar processing chain to produce their
AGB maps, despite the difference in scale and resolution
between the pantropical maps (RS1 and RS2) and the re-
gional map (RS3). They all use LiDAR data to produce
distributed estimates of canopy height (ICESat GLAS for
RS1 and RS2, aircraft LiDAR for RS3), convert these to
AGB using field data located under the LiDAR foot-
prints and generic allometric equations, and then use
these points to train model biomass across the landscape
using ancillary data layers, including optical satellite data
and terrain information. This method makes intrinsic
sense, balancing the cost to accuracy trade-off of field,
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LiDAR and optical data, and should produce internally
consistent products that can be validated against inde-
pendent field datasets. Such a processing chain could be
followed by most projects attempting to create baseline
carbon maps, and adapted to reflect existing input data
available, and the required accuracy. There has been little
work as yet on the uncertainties associated with differen-
cing products produced in this way for different years to
assess changes due to deforestation, degradation, and for-
est growth: as REDD+ payments are effectively based on
differences in carbon stocks, it is important that further
work is done in this area.
Quantifying emissions from deforestation has largely

made use of simple book-keeping models based around
FAO and IPCC data [1,30], and more recently explicit
carbon maps to quantify stocks before deforestation at a
pixel level [3]. The results here support the latter ap-
proach: it is clear that carbon stocks vary greatly within
the forests of every country, and that is important be-
cause deforestation within a country is also not evenly
distributed. For this reason information on the spatial
distribution of stocks would be expected to improve
upon estimates based strictly on sampling approaches.
Currently the carbon stocks for a region or country are

often based on guideline mean biomass values for particu-
lar vegetation types [31] or on country-specific mean car-
bon stock values, for example from FRA 2010 [20]. These
results suggest that pantropical biomass maps can provide
much better estimates of carbon stocks at a project or na-
tional level, and despite some differences, independent
maps show a high level of consistency. We hope that these
products, and improvements on them, are widely used. All
three maps compared here contain detailed error propaga-
tion procedures, and give confidence intervals at both a
pixel and regional level [15,16,21]. Ultimately the only way
to truly quantify the errors on biomass maps of these
scales would be to perform the destructive harvest of plots
the size of a whole pixel, which is impractical, so these un-
certainty estimates are themselves only estimates of the
true error. However, error propagation methods for bio-
mass mapping are now well established [9,32], and the
relative agreement between all three independent maps, at
least at a regional scale, provides some confidence in this
procedure.
Despite the general agreement discussed above, we can-

not ignore the large differences between the maps in some
areas (Figure 1). These tend to be areas where we have the
least field data, most notably in central Amazonia, the
Congo basin, and Papua New Guinea. Field campaigns,
ideally combined with destructive tree harvesting to re-
duce uncertainties in allometries, and airborne LiDAR to
allow for accurate spatial extrapolation across a landscape,
would be particularly useful to improve our understanding
of the carbon stocks in these regions.
Data preparation & methods
We performed all re-projections and subsequent analyses
of remote sensing data using IDL-ENVI 4.8 (Exelis VIS),
and all area summation calculations using ArcMap 9.3.1
(ESRI). The original AGB datasets (RS1 [15] and RS2 [16])
were provided by the authors in their native projections
and resolutions: 0.00833 degrees (c. 1 km) and a geo-
graphic (WGS-84) projection for RS1, and 463 m and the
MODIS sinusoidal projection for RS2. In order to avoid
introducing artefacts by changing the true resolution of ei-
ther dataset or averaging any pixel values, we warped RS1
to the same projection and resolution as RS2, using a
rigorous arithmetic conversion between the projections
and a nearest neighbour resampling method (so no pixel
values were changed). This had the added advantage that
the subsequent analyses all took place in an equal area pro-
jection (sinusoidal), simplifying area-summation and aver-
aging calculations. RS3 [21] was provided in a Universal
Transfer Mercator (UTM) projection at 100 m resolution;
we reprojected it to the 463 m MODIS sinusoidal projec-
tion of RS2 using a rigorous transformation and cubic con-
volution for comparative figures, and left it at its native
resolution for summation calculations. RS3 was provided
in units of Mg C ha-1, so we converted it to Mg ha-1 (dry
biomass), the same units as RS1 and RS2, by dividing by
0.485, the conversion stated in the paper [21].
We used two vector datasets to subset the AGB maps in

different ways. First we queried the data using country
outlines from the ESRI Data & Maps Database, using the
World Countries layer updated on 17th January 2012. Sec-
ond we used the Global Land Cover 2000 (GLC-2000) as
a vegetation cover dataset [33]; this dataset has been
shown to be globally consistent [34], uses a biologically-
relevant hierarchical legend based on the FAO Land Cover
Classification System, and was used as a core dataset in
the Millennium Ecosystem Assessment. Its 1 km reso-
lution is comparable to the remote sensing datasets.
We compared the different raster layers directly, and

through comparison of averages within the vector data-
sets. We also compared the datasets at a country level to
the total carbon estimates from the FAO’s 2010 Forest
Resource Assessment (FRA) [20]. In all cases we con-
verted dry biomass (the units of RS1 and RS2) to carbon
(the units of the FRA) by multiplying by 0.5 (following
that used by RS1 and RS2, but differing from the 0.485
used originally in RS3), and carbon to tCO2e by multi-
plying by 3.667 [9].
Data
The datasets used in this study have been made available
by the authors. RS1 is available at http://carbon.jpl.nasa.
gov/data/dataMain.cfm, and RS2 at http://www.whrc.
org/mapping/pantropical/carbon_dataset.html.

http://carbon.jpl.nasa.gov/data/dataMain.cfm
http://carbon.jpl.nasa.gov/data/dataMain.cfm
http://www.whrc.org/mapping/
http://www.whrc.org/mapping/
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Additionally the three datasets can be compared inter-
actively at http://carbonmaps.ourecosystem.com.

Additional files

Additional file 1: A comparison of the mean aboveground biomass
(AGB, Mg ha-1) in different landcover classes from the Global Land
Cover 2000 map between RS1 [15] and RS2 [16] by continent and
across the tropics. Water bodies are excluded from these calculations.

Additional file 2: A comparison of the mean, median, maximum
and total carbon stock by country in three datasets: RS1 [15], RS2
[16] and the FAO Forest Resource Assessment (FRA) 2010. The total
area of the country within the RS maps is also included: where this is
different to the total area of the country the figures are put in italics, and
comparisons with the FRA data (which are for the full country) are not
valid. Countries have only been included if greater than 50% of their
surface is covered by the RS maps. Water bodies are excluded from these
calculations.
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