4,024 research outputs found

    The Effect of Stocking Rate and Initial Grass Height on Herbage Production and Utilization, and Milk Production per Unit Area Under Set Stocking by Lactating Dairy Cows

    Get PDF
    In our previous study with lactating dairy cows (Nakatsuji et al., 2004), annual herbage production and utilization, and milk production per unit area under set stocking was not always lower than under rotational grazing at the same stocking rate (6 cows/ha). Furthermore, there was a possibility that set stocking could increase pasture utilization and milk production over rotational grazing when cows were grazed at adequate stocking rate and at the appropriate initial date of grazing. The purpose of the present study was to evaluate the effect of stocking rate and initial grass height on herbage production and utilization, and milk production per unit area under set stocking by lactating dairy cows

    VvmybA1 genotype determines grape skin color

    Get PDF
    Research Not

    Kondo-like behaviors in magnetic and thermal properties of single crystal Tm5Si2Ge2

    Full text link
    We grew the single crystal of stoichiometric Tm5Si2.0Ge2.0 using a Bridgeman method and performed XRD, EDS, magnetization, ac and dc magnetic susceptibilities, specific heat, electrical resistivity and XPS experiments. It crystallizes in orthorhombic Sm5Ge4-type structure. The mean valence of Tm ions in Tm5Si2.0Ge2.0 is almost trivalent. The 4f states is split by the crystalline electric field. The ground state exhibits the long range antiferromagnetic order with the ferromagnetically coupled magnetic moments in the ac plane below 8.01 K, while the exited states exhibit the reduction of magnetic moment and magnetic entropy and -log T-behaviors observed in Kondo materials.Comment: 8 pages, 13 figure

    Nature of the insulating phases in the half-filled ionic Hubbard model

    Full text link
    We investigate the ground-state phase diagram of the one-dimensional "ionic" Hubbard model with an alternating periodic potential at half-filling by numerical diagonalization of finite systems with the Lanczos and density matrix renormalization group (DMRG) methods. We identify an insulator-insulator phase transition from a band to a correlated insulator with simultaneous charge and bond-charge order. The transition point is characterized by the vanishing of the optical excitation gap while simultaneously the charge and spin gaps remain finite and equal. Indications for a possible second transition into a Mott-insulator phase are discussed.Comment: final for

    Performance of a Low Noise Front-end ASIC for Si/CdTe Detectors in Compton Gamma-ray Telescope

    Full text link
    Compton telescopes based on semiconductor technologies are being developed to explore the gamma-ray universe in an energy band 0.1--20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of such Compton telescopes is the high energy resolution that is crucial for high angular resolution and high background rejection capability. The energy resolution around 1 keV is required to approach physical limit of the angular resolution due to Doppler broadening. We have developed a low noise front-end ASIC (Application-Specific Integrated Circuit), VA32TA, to realize this goal for the readout of Double-sided Silicon Strip Detector (DSSD) and Cadmium Telluride (CdTe) pixel detector which are essential elements of the semiconductor Compton telescope. We report on the design and test results of the VA32TA. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV and 122 keV at 0 degree C with a DSSD and 1.7 keV (FWHM) with a CdTe detector.Comment: 6 pages, 7 figures, IEEE style file, to appear in IEEE Trans. Nucl. Sc

    Soybean gene express: plataforma para análise de expressão diferencial e bibliotecas substrativas de cDNA.

    Get PDF
    bitstream/item/71550/1/ID-30973.pd

    Till death (or an intruder) do us part: intrasexual-competition in a monogamous Primate

    Get PDF
    Polygynous animals are often highly dimorphic, and show large sex-differences in the degree of intra-sexual competition and aggression, which is associated with biased operational sex ratios (OSR). For socially monogamous, sexually monomorphic species, this relationship is less clear. Among mammals, pair-living has sometimes been assumed to imply equal OSR and low frequency, low intensity intra-sexual competition; even when high rates of intra-sexual competition and selection, in both sexes, have been theoretically predicted and described for various taxa. Owl monkeys are one of a few socially monogamous primates. Using long-term demographic and morphological data from 18 groups, we show that male and female owl monkeys experience intense intra-sexual competition and aggression from solitary floaters. Pair-mates are regularly replaced by intruding floaters (27 female and 23 male replacements in 149 group-years), with negative effects on the reproductive success of both partners. Individuals with only one partner during their life produced 25% more offspring per decade of tenure than those with two or more partners. The termination of the pair-bond is initiated by the floater, and sometimes has fatal consequences for the expelled adult. The existence of floaters and the sporadic, but intense aggression between them and residents suggest that it can be misleading to assume an equal OSR in socially monogamous species based solely on group composition. Instead, we suggest that sexual selection models must assume not equal, but flexible, context-specific, OSR in monogamous species.Wenner-Gren Foundation, L.S.B. Leakey Foundation, the National Geographic Society, National Science Foundation (BCS- 0621020), the University of Pennsylvania Research Foundation and the Zoological Society of San Diego, German Science Foundation (HU 1746-2/1

    Layer thickness dependence of the current induced effective field vector in Ta|CoFeB|MgO

    Full text link
    The role of current induced effective magnetic field in ultrathin magnetic heterostructures is increasingly gaining interest since it can provide efficient ways of manipulating magnetization electrically. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we show vector measurements of the current induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field shows significant dependence on the Ta and CoFeB layers' thickness. In particular, 1 nm thickness variation of the Ta layer can result in nearly two orders of magnitude difference in the effective field. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects that contribute to the effective field. The relative size of the effective field vector components, directed transverse and parallel to the current flow, varies as the Ta thickness is changed. Our results illustrate the profound characteristics of just a few atomic layer thick metals and their influence on magnetization dynamics

    Excitation Spectrum of One-dimensional Extended Ionic Hubbard Model

    Full text link
    We use Perturbative Continuous Unitary Transformations (PCUT) to study the one dimensional Extended Ionic Hubbard Model (EIHM) at half-filling in the band insulator region. The extended ionic Hubbard model, in addition to the usual ionic Hubbard model, includes an inter-site nearest-neighbor (n.n.) repulsion, VV. We consider the ionic potential as unperturbed part of the Hamiltonian, while the hopping and interaction (quartic) terms are treated as perturbation. We calculate total energy and ionicity in the ground state. Above the ground state, (i) we calculate the single particle excitation spectrum by adding an electron or a hole to the system. (ii) the coherence-length and spectrum of electron-hole excitation are obtained. Our calculations reveal that for V=0, there are two triplet bound state modes and three singlet modes, two anti-bound states and one bound state, while for finite values of VV there are four excitonic bound states corresponding to two singlet and two triplet modes. The major role of on-site Coulomb repulsion UU is to split singlet and triplet collective excitation branches, while VV tends to pull the singlet branches below the continuum to make them bound states.Comment: 10 eps figure
    • …
    corecore