33 research outputs found

    Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral targets against Chikungunya, Dengue and Zika viruses

    Get PDF
    Current and reoccurring viral epidemic outbreaks such as those caused by the Zika virus illustrate the need for rapid development of antivirals. Such development would be facilitated by computational approaches that can provide experimentally testable predictions for possible antiviral strategies. To this end, we focus here on the fact that viruses are directly dependent on their host metabolism for reproduction. We develop a stoichiometric, genome-scale metabolic model that integrates human macrophage cell metabolism with the biochemical demands arising from virus production and use it to determine the virus impact on host metabolism and vice versa. While this approach applies to any host–virus pair, we first apply it to currently epidemic viruses Chikungunya, Dengue and Zika in this study. We find that each of these viruses causes specific alterations in the host metabolic flux towards fulfilling their biochemical demands as predicted by their genome and capsid structure. Subsequent analysis of this integrated model allows us to predict a set of host reactions, which, when constrained, inhibit virus production. We show that this prediction recovers known targets of existing antiviral drugs, specifically those targeting nucleotide production, while highlighting a set of hitherto unexplored reactions involving both amino acid and nucleotide metabolic pathways, with either broad or virus-specific antiviral potential. Thus, this computational approach allows rapid generation of experimentally testable hypotheses for novel antiviral targets within a host

    Burkholderia pseudomallei: animal models of infection.

    No full text
    A range of animal models of Burkholderia pseudomallei infection have been reported, and the host species differ widely both in their susceptibility to infection and in the pathogenesis of disease. In mice, and depending on the route of infection, dose, and mouse strain, the disease can range from a chronic, and in some cases, an apparently latent infection to an acute fulminant disease. Alternative small animal models of infection include diabetic rats or hamsters. Larger animal models of disease have not yet been fully developed. It is not clear which of the small animal models of melioidosis most accurately reflect disease in humans. However, the findings that diabetic rats are susceptible to infection, that some strains of mice can develop persistent subclinical infections that can spontaneously reactivate, and that inhalation exposure generally results in more acute disease suggest that these different models mimic different aspects of human melioidosis

    Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of <i>Burkholderia pseudomallei</i>

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, plays a critical role in the orchestration of immune responses. S1P levels within the mammalian host are tightly regulated, in part through the activity of S1P lyase (S1PL) which catalyses its irreversible degradation. Herein we describe the identification and characterization of secreted S1PL orthologues encoded by the facultative intracellular bacteria Burkholderia pseudomallei and Burkholderia thailandensis. These bacterial orthologues exhibited S1PL enzymatic activity, functionally complemented an S1PL-deficient yeast strain, and conferred resistance to the antimicrobial sphingolipid D-erythro-sphingosine. We report that secretion of these bacterial S1PLs is pH-dependent, and is observed during intracellular infection. S1PL-deficient mutants displayed impaired intracellular replication in murine macrophages (associated with an inability to evade the maturing phagosome) and were significantly attenuated in murine and larval infection models. Furthermore, treatment of Burkholderia-infected macrophages with either S1P or a selective agonist of S1P receptor 1 enhanced bacterial colocalisation with LAMP-1 and reduced their intracellular survival. In summary, our studies confirm bacterial-encoded S1PL as a critical virulence determinant of B. pseudomallei and B. thailandensis, further highlighting the pivotal role of S1P in host-pathogen interactions. In addition, our data suggest that S1P pathway modulators have potential for the treatment of intracellular infection.We thank HL Ho & K Haynes (University of Exeter) for provision of strains and relevant vectors for yeast complementation studies. This work was supported by the Defence Science 26 and Technology Laboratory under contract DSTLX-1000060221 (WP1). CJM was funded by the EASTBIO Doctoral Training Partnership. The funders had no role in study design, data collection and analysis, or preparation of the manuscript

    An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions

    Get PDF
    Background The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans

    Inhibition of macrophage infectivity potentiator in Burkholderia pseudomallei suppresses pro-inflammatory responses in murine macrophages

    Get PDF
    IntroductionMelioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response.MethodsMurine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection.ResultsGlobal transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1β levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release.DiscussionThese data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock

    Diversity oriented biosynthesis via accelerated evolution of modular gene clusters.

    Get PDF
    Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines. The method is exemplified in the rapamycin biosynthetic gene cluster where, in a single experiment, multiple strains were isolated producing new members of a rapamycin-related family of polyketides. The process mimics, but significantly accelerates, a plausible mechanism of natural evolution for modular polyketide synthases. Detailed sequence analysis of the recombinant genes provides unique insight into the design principles for constructing useful synthetic assembly-line multienzymes

    抗精神病薬によるジストニアの発現機序に関する実験的研究 σ (sigma) sites の関与について

    Get PDF
    Published ErratumBurkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.Wellcome Trus
    corecore