438 research outputs found
Management and Exploitation of Macroalgal Biomass as a Tool for the Recovery of Transitional Water Systems
Aquatic angiosperms favor the development of ecosystems services, the welfare of marine organisms and people. Generally, the presence of angiosperms in transitional water systems (TWS) are indicators of good ecosystem status. Presently, these environments are densely populated and often are so highly degraded that angiosperms have almost disappeared, replaced by tionitrophilic macroalgae responsible of anoxic events that deteriorate the environment furtherly. Although this trend is hardly reversible because the anthropogenic impact is increasing and the restoring of damaged environments within a reasonable time is difficult, recent studies have shown that by managing the harvesting of the natural algal species of commercial interest a progressive environmental recovery is achievable. Biomass-harvesting can contribute both to the removal of high amounts of nutrients and the generation of economic revenues for a sustainable, self-financed environmental restoration. In fact, unlike clam-farming which destroys the seabed and re-suspends large amounts of sediments, the proper management of the macroalgal biomass, can favor the nutrient abatement and the recolonization of aquatic angiosperms which help restore the conditions necessary for the conservation of the benthic and fish fauna and birds, and produce valuable economic resources
Accumulation of trace metals in crayfish tissues: is Procambarus clarkii a vector of pollutants in Po Delta inland waters?
Concentrations of trace elements (Cd, Pb, As, Cu and Zn) were determined in superficial sediments and in hepatopancreas, exoskeleton, and abdominal muscle of the red swamp crayfish Procambarus clarkii from several canals of the Po River Delta area. Sediments of the studied canals exhibited some metal pollution. The hepatopancreas of the crayfish showed a higher concentration of trace metals in comparison to the other tissues at all sites under scrutiny. Concentrations of As and Pb, either in sediment and P. clarkii tissues, were probably related to the use of fertilizers and pesticides. Moreover, the levels of certain metals accumulated in the abdominal muscle (Pb, Cu and Zn) exceeded the threshold values considered harmful to human health. The Toxic Contamination Index, depending on the bioaccumulation data of hepatopancreas and abdominal muscle, allowed us to assess the toxicity by heavy metals of sediments measuring the stress level of the detoxification organ, and resulted in >1 only at two sampling canals. We hypothesize that P. clarkii in the Po River Delta aquatic communities can act as a vector of pollutants, as crayfish can transfer their relatively high amount of heavy metals to higher trophic levels
Microplastic Contamination in Protected Areas of the Gulf of Venice
We investigated the concentration and composition of plastics in 7 Special Areas of Conservation (SACs) from the Gulf of Venice (northern Adriatic Sea). A total of 42 sediment samples were analyzed from 21 sites from 2017 to 2018. All sites except one were found to be polluted by plastics, with density ranging between 2250 and 28.4 items kgâ1. Microplastics ranged from 100 to 61.6% of the collected plastics. Fragments were more represented than filaments. The greatest plastic concentrations were generally recorded in western SACs. Identification through FT-IR spectroscopy evidenced the presence of 8 polymer types: in western SACS, the majority were low-density polymers (PE, PP, PS, and TPU), while in eastern SACs they were high-density polymers (PET, nylon, and PVC). In addition to the role of large rivers (all on the western side of the Gulf) in conveying plastics into the sea, a possible role of the cyclonic water circulation of the northern Adriatic Sea on distribution and composition of plastics along the Gulf coasts is likely
Macrophytes: A temporary sink for microplastics in transitional water systems
Marine macrophytes are hypothesized to be a major temporary sink for microplastics. In this study, microplastic contamination was investigated in 15 macroalgal species and one seagrass from different sites in two lagoons of the northern Adriatic Sea: the Goro lagoon and the Venice lagoon. A high percentage (94%) of the macrophyte samples contained microplastics, ranging from 0.16 to 330 items gâ1 fw, with the prevalent size in the range 30â90 ”m and an average contamination per unit of fresh weight of 14 items gâ1 fw. Microplastic contamination displayed a site-specific, rather than a species-specific, pattern of accumulation. In addition, exopolysaccharides (EPS) displayed a significant positive correlation with the microplastics ononcontamination on macrophytes acting as glue for the plastic particles available in the water column
Multiannual trend of micro-pollutants in sediments and benthic community response in a mediterranean lagoon (Sacca di Goro, Italy)
Long-term variations of ecological status in a Mediterranean coastal lagoon (Sacca di Goro, Northern Adriatic) were investigated, combining data on the concentration of surface sediment contaminants and on the structure of the macrobenthic community. The aim was to assess any amount of chemical contamination and check the response of the macrobenthic community to sediment contamination. Over the studied period, the sediments of the lagoon showed contamination by trace metals and organochlorine pesticides, with most of them exceeding the thresholds indicated by the Italian legislation in many samples. Contamination by polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) instead never exceeded the threshold. The ecological status based on the macrobenthic community, evaluated through biotic indices (AMBI and M-AMBI), fell below the Good/Moderate threshold in most samples. The results indicate a possible influence of toxic compounds in sediment on benthic organisms, but most of the variability shown by the macrobenthic community is probably due to other factors. The difficulty in establishing a cause/effect relationship was due to the co-occurrence and variability of various stressors (both natural and anthropogenic) and their interactions. The methods currently used for monitoring transitional waters thus seem insufficient to disentangle the effect of pollutants and other environmental variables on the benthos. Integrated approaches (e.g., bioaccumulation and toxicity tests) are thus needed for a more precise identification of the risk posed by a high concentration of pollutants in such environments
The occurrence of two morphologically similar Chaetozone (Annelida: Polychaeta: Cirratulidae) species from the Italian seas: Chaetozone corona Berkeley & Berkeley, 1941 and C. carpenteri McIntosh, 1911
The present study reports the spread of the cirratulids Chaetozone corona Berkeley & Berkeley, 1941 and Chaetozone carpenteri McIntosh, 1911 in the Western Central Adriatic Sea, off the coasts of Pescara (Italy). The two species were collected between 2014 and 2016 from soft bottom stations (at depths from 16.5 to 130 m) where the environment was more or less disturbed due to fishing activities. One specimen of C. corona was found also off the coast of Calafuria (Livorno, Italy), representing the first record of this species in the Tyrrhenian Sea. Chaetozone carpenteri could be a native species present in the Mediterranean for a long time but rarely recorded because of taxonomic confusion. Chaetozone corona was already known from the eastern Mediterranean Sea (except from the Adriatic Sea), where it is considered an established alien species. Our results extend the geographic range of these two cirratulid species, providing some information on their ecology and habitat preference. We also suggest a likely vector of spread of C. corona from the easternmost part of the Mediterranean towards the study area. The finding of reproducing specimens of C. corona and C. carpenteri supports the hypothesis that these two species have found a suitable habitat in the Western Central Adriatic Sea, and there will become well established. Although nothing suggests that C. corona would be invasive, it may, however, compete with native species. These findings also seem particularly relevant in order to improve the knowledge of Mediterranean biodiversity
Sedimentation Rates: Anthropogenic Impacts and Environmental Changes in Transitional Water Systems
The trophic evolution of the Venice lagoon was analyzed by studying the particulate collected monthly with sedimentation traps in many areas of the Venice lagoon since 1989, and at Goro in 2018â2019. Sedimentation rates were strongly related to the presence of macrophytes, which reduced sediment resuspension, and to anthropogenic pressures, such as clam harvesting and naval-boat traffic, that triggered sediment resuspension and loss. The highest mean annual sedimentation rates (from 2000 to over 4000 g DWT mâ2 dayâ1) have been recorded in many areas of the Venice lagoon between 1998â1999 to 2001â2002, during the intense fishing activities of the clam Ruditapes philippinarum. High values (daily peaks up to 5224 g DWT mâ2 dayâ1) were also recorded in areas affected by marine and/or recreational traffic, due to the high wave motion. In contrast, the presence of high biomasses of macroalgae, or seagrasses, reduced significantly sediment resuspension and settlement, with mean annual sedimentation rates ranging between 40 and 140 g DWT mâ2 dayâ1 and minimum values of 6â10 g DWT mâ2 dayâ1. High sedimentation rates were strongly related to a lower sediment grain-size, with loss of the fine fraction and dispersion of nutrients and pollutants in the whole lagoon
Sediment contamination by heavy metals and PAH in the Piombino Channel (Tyrrhenian Sea).
Sediment contamination is of major concern in areas affected by heavy maritime trafïŹc. The spatial variation and contamination of 11 trace elements and 17 PAHs in surface sediments were studied along a 31 km transect along the seaway from the port of Piombino (Tuscany) to the port of Portoferraio (Elba Island) in the Northern Tyrrhenian Sea. Heavy metal contamination was detected at sites near Piombino (Ni, Pb, Hg, Cu and Zn) and at sites near Portoferraio (Pb, Zn, Hg, Cr and Cd). Each of the 35 sampled sites showed PAH contamination, with the highest concentrations at sites near Portoferraio. The most abundant isomers detected were 2- and 4-ring PAHs. PAH ratio analysis showed a prevalence of PAHs of pyrolytic origin. High values of PAHs and heavy metals were related to high sediment water content, TOC, silt, and clay content. Arsenic increased with increasing depth. The correlation between concentrations of metals and PAHs suggests common anthropogenic sources and is of concern for possible synergistic adverse effects on the biota
Where, when, how and what seagrass to transplant for long lasting results in transitional water systems: the cases of Cymodocea nodosa, Zostera marina, Zostera noltei and Ruppia cirrhosa
Seagrasses play a vital role in marine ecosystems worldwide. However, until
recently these ecosystems were experiencing declines due to various global and local threats. In response to this issue, initiatives have been launched to combat seagrass loss by addressing local and regional major stressors and actively engaging in restoration efforts by transplantation. Although seagrass
restoration has progressed significantly with the development of numerous
transplant techniques, these are not always crowned with success. This is
often due to the fact that the environmental parameters of water, sediment
and biota of the recipient sites are not carefully considered in their suitability for transplantation. In this study, the multi-year experiences and data from
numerous environmental surveys in transitional water systems have been
condensed to define limit values for the ideal growth conditions and the
extreme values in which the survival of four aquatic angiosperm species is
possible: Cymodocea nodosa, Zostera marina, Zostera noltei and Ruppia
cirrhosa. Approaches to transplants, seasonality and critical issues have been
explored. The identified limits and parameters of water, sediment and biota will help to define the suitability of a recipient site for the rooting of seagrasses, increasing the chances of success for transplant operations
Soil carbon investigation in three pedoclimatic and agronomic settings of northern Italy
Sustainable agricultural management is needed to promote carbon (C) sequestration in soil, prevent loss of soil fertility, and reduce the release of greenhouse gases. However, the influence of agronomic practices on soil C sequestration depends on the existing pedoclimatic features. We characterized the soils of three farms far away each other in the Emilia-Romagna region (Northern Italy): an organic farm in the Northern Apennines, a biodynamic farm, and a conventional farm on the Po Plain. The total, inorganic, and organic carbon in soil, as well as the distinct humic fractions were investigated, analyzing both the elemental and isotopic (13C/12C) composition. In soils, organic matter appears to be variously affected by mineralization processes induced by microorganisms that consume organic carbon. In particular, organic carbon declined in farms located in the plain (e.g., organic carbon down to 0.75 wt%; carbon stock0-30 cm down to 33 Mg/ha), because of the warmer climate and moderately alkaline environment that enhance soil microbial activity. On the other hand, at the mountain farm, the minimum soil disturbance, the cold climate, and the neutral conditions favored soil C sequestration (organic carbon up to 4.42 wt%; carbon stock0-30 cm up to 160 Mg/ha) in humified organic compounds with long turnover, which can limit greenhouse gas emissions into the atmosphere. This work shows the need for thorough soil investigations, to propose tailored best-practices that can reconcile productivity and soil sustainability
- âŠ