156 research outputs found

    FEDERAL GRANTS: HOW CURRENT POLITICS AND ADMINISTRATIVE ISSUES ARE IMPACTING THE FEDERAL GRANTMAKING PROCESS, FROM AN APPLICANT PERSPECTIVE

    Get PDF
    Pursuing competitive funding through the federal grantmaking system is a complex process that is often burdensome and difficult to navigate. Given that the federal government awards billions of dollars per year in federal funding, it is to be expected that many prospective applicants will have difficulty understanding the complexities of how the government distributes funding. After decades of academic research, there is a greater understanding of the forces that impact the distribution of federal dollars, but the dynamic nature of the political landscape in Washington requires that new developments and issues be continuously evaluated so we have an accurate understanding of what influences the distribution of federal funding. This analysis provides a greater understanding of how the current realities of the federal grantmaking process may affect the distribution of federal funding by evaluating three different issues impacting the federal grantmaking system today, using the perspective of a prospective applicant, the primary user of the federal grantmaking system, as a way to understand which issues are important to examine and understand. The first chapter examines the return of congressionally directed spending in Congress, the second chapter examines issues in the process of identifying federal funding opportunities, and the third chapter examines the complexities of federal funding application processes. The issues explored in each chapter of the portfolio contribute to a more nuanced understanding of the complex tasks facing entities seeking competitive federal funding. The analysis finds that the federal government must do more to improve and streamline the federal grantmaking process to ensure federal funds are provided in the most efficient and effective manner

    Born to be Alive: A Role for the BCL-2 Family in Melanoma Tumor Cell Survival, Apoptosis, and Treatment

    Get PDF
    The global incidence of melanoma has dramatically increased during the recent decades, yet the advancement of primary and adjuvant therapies has not kept a similar pace. The development of melanoma is often centered on cellular signaling that hyper-activates survival pathways, while inducing a concomitant blockade to cell death. Aberrations in cell death signaling not only promote tumor survival and enhanced metastatic potential, but also create resistance to anti-tumor strategies. Chemotherapeutic agents target melanoma tumor cells by inducing a form of cell death called apoptosis, which is governed by the BCL-2 family of proteins. The BCL-2 family is comprised of anti-apoptotic proteins (e.g., BCL-2, BCL-xL, and MCL-1) and pro-apoptotic proteins (e.g., BAK, BAX, and BIM), and their coordinated regulation and function are essential for optimal responses to chemotherapeutics. Here we will discuss what is currently known about the mechanisms of BCL-2 family function with a focus on the signaling pathways that maintain melanoma tumor cell survival. Importantly, we will critically evaluate the literature regarding how chemotherapeutic strategies directly impact on BCL-2 family function and offer several suggestions for future regimens to target melanoma and enhance patient survival

    Transport, Growth Mechanisms, and Material Quality in GaN Epitaxial Lateral Overgrowth

    Get PDF
    Growth kinetics, mechanisms, and material quality in GaN epitaxial lateral over-growth (ELO) were examined using a single mask of systematically varied patterns. A 2-D gas phase reaction/diffusion model describes how transport of the Ga precursor to the growth surface enhances the lateral rate in the early stages of growth. In agreement with SEM studies of truncated growth runs, the model also predicts the dramatic decrease in the lateral rate that occurs as GaN over-growth reduces the exposed area of the mask. At the point of convergence, a step-flow coalescence mechanism is observed to fill in the area between lateral growth-fronts. This alternative growth mode in which a secondary growth of GaN is nucleated along a single convergence line, may be responsible for producing smooth films observed to have uniform cathodoluminescence (CL) when using 1{micro}m nucleation zones. Although emission is comprised of both UV ({approximately}365nm) and yellow ({approximately}550nm) components, the spectra suggest these films have reduced concentrations of threading dislocations normally associated with non-radiative recombination centers and defects known to accompany growth-front convergence lines

    Low-dislocation-density GaN from a single growth on a textured substrate

    Get PDF
    The density of threading dislocations (TD) in GaN grown directly on flat sapphire substrates is typically greater than 10{sup 9}/cm{sup 2}. Such high dislocation densities degrade both the electronic and photonic properties of the material. The density of dislocations can be decreased by orders of magnitude using cantilever epitaxy (CE), which employs prepatterned sapphire substrates to provide reduced-dimension mesa regions for nucleation and etched trenches between them for suspended lateral growth of GaN or AlGaN. The substrate is prepatterned with narrow lines and etched to a depth that permits coalescence of laterally growing III-N nucleated on the mesa surfaces before vertical growth fills the etched trench. Low dislocation densities typical of epitaxial lateral overgrowth (ELO) are obtained in the cantilever regions and the TD density is also reduced up to 1 micrometer from the edge of the support regions

    Development and operational experience of magnetic horn system for T2K experiment

    Get PDF
    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×10206.63\times10^{20} protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the νμνe\nu_{\mu}\rightarrow\nu_e oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and Methods in Physics Research,
    corecore