48 research outputs found

    Development of Greenhouse Monitoring using Wireless Sensor Network through ZigBee Technology

    Get PDF
    Greenhouses are often used for growing flowers, vegetables, fruits, and tobacco plants. Most greenhouse systems still use the manual system in monitoring the temperature and humidity in the greenhouse, a lot of problems can occur not for worker but also affected production rate because the temperature and humidity of the greenhouse must be constantly monitored to ensure optimal conditions. The Wireless Sensor Network (WSN) can be used to gather the data from point to point to trace down the local climate parameters in different parts of the big greenhouse to make the greenhouse automation system work properly. This paper presents the design of low cost greenhouse monitoring system to monitor a greenhouse temperature and humidity parameters by applying the ZigBee technology as the WSN system. During the design process, Peripheral Interface Controller (PIC), LCD Display and Zigbee as the main hardware components is used as hardware components while C compiler and MP Lab IDE were used for software elements. The data from the greenhouse was measured by the sensor then the data will be displayed on the LCD screen on the receiver which support up to 100 m range. By using this system, the process of monitoring is easier and it also cheaper for installation and maintenance. The feasibility of the developed node was tested by deploying a simple sensor network into the Agriculture Department of Melaka Tengah greenhouse in Malaysia

    Design of Low Power Wideband Low Noise Amplifier for Software Defined Radio at 100 MHz to 1 GHz

    Get PDF
    This paper describes the design of wideband low noise amplifier (LNA) for mobile software defined radio (SDR) application which targeted to be applied in two-way communication mobile system architecture. The technical specification was deduced from the TIA- 603C standard receiver system sensitivity and intermodulation. The proposed LNA exhibit low power consumption and adopts a negative feedback wideband amplifier topology, operated from 100 MHz to 1 GHz which covers the whole Land Mobile FM Communication Equipment (136 941 MHz) frequency band. The proposed topology solve the RF tracing problem inherited in the targeted frequency and also the problem of economically impractical PCB size rendered by other wideband amplifier methods. The Advanced Design System software is used to perform the simulations. The measured result show the proposed LNA has a stable gain of more than 15 dB, noise figure less than 1.5 dB, S11 and S22 less than -10 dB, with current consumption of 8 mA from voltage supply at 1.8 V

    Design of Low Noise Amplifier for Radio over Fiber at 5.2 GHz

    Get PDF
    This paper presents the design and simulation of low noise amplifier (LNA) used in an active radio access point (RAP) for Radio over Fiber (RoF) technology at 5.2 GHz. RoF is integration of optical fiber for radio signal transmission within network infrastructures that is considered to be cost effective, practical and relative system configuration for long haul transport of millimeter frequency band wireless signal. The LNA designed function is to amplify extremely low signals without adding noise, thus preserving the required Signal Noise Ratio (SNR) of system at extremely low power signal. The implementation of design is based on Agilent ATF-5143 transistor and Microwave Office software is used to perform the simulation in S-parameters. The design and simulation process including selecting the transistor based on RoF requirements, stability of transistor, matching network, biasing and optimization. The design has shown an acceptable behavior with gain of 16.046 dB and noise figure of 0.9368 dB using conjugate matching method

    Design of Wideband Low Noise Amplifier using Negative Feedback Topology for Motorola Application

    Get PDF
    This paper describes the design of wideband low noise amplifier (LNA) for Motorola application which targeted to be applied in two-way communication mobile system architecture. The technical specification was deduced from the TIA-603C standard receiver system sensitivity and inter-modulation. The proposed LNA exhibit low power consumption and adopts a negative feedback wideband amplifier topology, operated from 100 MHz to 1 GHz which covers the whole Land Mobile FM Communication Equipment (136 – 941 MHz) frequency band. The proposed topology solve the RF tracing problem inherited in the targeted frequency and also the problem of economically impractical PCB size rendered by other wideband amplifier methods. The Advanced Design System software is used to perform the simulations. The measured result show the proposed LNA using FR4 board has a stable gain of more than 15 dB, noise figure less than 1.5 dB, S11 and S22 less than -10 dB, with current consumption of 8 mA from voltage supply at 1.8 V

    Simulation of 2.4 GHz Low Power RF Front End Design for Radio over Fiber Technology

    Get PDF
    This paper presents the simulation low power RF front end design of radio access point (RAP) for Radio over Fiber (RoF) technology at 2.4 GHz. Wireless network based on radio over fiber (RoF) technology has been proposed as a promising cost effective solution to meet ever increasing user bandwidth and wireless demands. In this network, a central station (CS) is connected to numerous functionally simple radio access point (RAP) via an optical fiber.The only components required at the passive RAP are Electro Absorption Modulator (EAM) and antenna where EAM is used as a remote transceiver. Pico cell has a coverage range up to 100 m. To achieve this distance, RAP needs to operate in active mode, by inserting RF power amplifier and Bandpass Filter (BPF) between EAM and the antenna for the downlink path. BPF is needed remove out of band interference after EAM while the power amplifier is used to improve the dynamic range of RAP. The implementation of the design is based on microstrip technology and Advanced Design System (ADS) software used to perform the simulation. In the simulation, the analyses of scattering parameters are concerned which presents the gain and return loss of the front end. At the end of design, the combination between parallel couple BPF and power amplifier is purposed as a RF front end of RAP for RoF technology

    Social Networking as Support Tool for Online Teaching and Learning Factors and Contributions

    Get PDF
    Creating a good and stylish online learning for education is always bringing a good response to student especially for long-distance learning. The outcome is clear; which is to expand the capability of online education for all people around the globe by giving them a chance to study wherever they live and work as long they have good Internet access. Immersive learning as we all know consisting of the virtual reality aspect that bring educator and learner closer without having them to leave their place in order to gain knowledge and further their study. This paper studied the requirement to perform immersive learning while characterizing each challenge that we must face to perform a good online learning. We also numbered few technologies that could benefits the online learning either through website or online video conferencing

    Wireless Network Visualization in 3D Virtual Environment Framework

    Get PDF
    Simulating a signal propagation of wireless cognitive network has been widely accepted by researchers in order to come out with three-dimensional (3D) representation data display. Instead of using primitive way to understand the behavior of signal propagation, 3D visualization of wireless networking could also help researchers to study the limitation and exploration of wireless cognitive network deeply. In this paper, we would like to address the requirement and the potential of using 3D representation to visualize properly the wireless cognitive network. We also performed preliminary test of our 3D visualization system using OpenGL graphic library to visualize the propagation of signal travelling in specific room with several medium. The test has been conducted in order to understand the requirement of wireless cognitive network in 3D visualization before the actual system is built

    Simulation of WiMAX System Based on OFDM Model with Difference Adaptive Modulation Techniques

    Get PDF
    This paper presents the simulation of Worldwide Interoperability for Microwave Access (WiMAX) system based on Orthogonal Frequency Division Multiplexing (OFDM) with different adaptive modulation techniques. WiMAX is the next generation broadband wireless technology which offers greater range and bandwidth compared to the other available broadband wireless access technologies such as Wireless Fidelity (WiFi) and Ultra Wideband (UWB) family of standards. The simulation is based on the WiMAX physical layer which adopted an OFDM model in the transmitter and receiver. The Matlab software is used to develop the OFDM model and analysis the performance of WiMAX system. Hence the investigation of the performance of OFDM physical layer in WiMAX system by using different adaptive modulation techniques like Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM) for modulator and demodulator. The performance of system was compared between the model with cyclic prefix and without cylic prefix. The cyclic prefix is added additional bits at the transmitter end. The signal is transmitted through the channel and it is received at the receiver end. Then the receiver removes these additional bits. The purpose of the cyclic prefix is to minimize the inter symbol interference and to improve the bit error rate. The analysis is based on the Bit Error Rate (BER), Signal to Noise Ratio (SNR) and probability error. At the end, the modulation BPSK and QPSK have the lower bit error rate while the 64 QAM has the higher bit error rate at low SNR. For the probability of error, the lower order modulation scheme also has the lower BER at low SNR

    Design the High Gain and Low Power Amplifier for Radio over Fiber Technology at 2.4 GHz

    Get PDF
    This paper describes the high performance design a power amplifier for Radio over Fiber (RoF) Technology at 2.4 GHz using Agilents HBFP-0450 transistor. Based on wireless network RoF technology has been proposed as a promising cost effective solution to meet ever increasing user bandwidth and wireless demands. In this network, a central station (CS) is connected to numerous functionally simple Radio Access Point (RAP) via an optical fiber. The only components required at the passive RAP are Electro Absorption Modulator (EAM) and antenna where EAM is used as a remote transceiver. There are practical limitations on the power that can produce by the passive RAP which can affect the dynamic range. In order to improve the dynamic range of passive pico cell RAP power amplifier is placed at the front end of RAP for the downlink transmission which operate in active mode. The central station (CS) is connected to numerous functionally simple RAP via an optical fiber in the RoF network. The design is based on the conjugate matching method which able to achieve the maximum gain. The performance of the design simulation done using Agilent Advanced Design System (ADS) software . The design has shown an acceptable behavior with gain of 13.172 dB. At the 1-dB compression point the output power is approximately 16.108 dB and the Power Added Efficiency (PAE) is 24.915 %

    A systematic optimization procedure of antenna miniaturization for efficient wireless energy transfer

    Get PDF
    This paper presents a systematic optimization procedure to determine the reduced antenna size aimed at obtaining the best efficiency or at least equal performance with the initial large antenna design in a wireless energy transfer (WET) system. A low-cost, square-shaped planar loop antenna designed on each side of FR4 substrate is used as both the miniature transmitter and receiver antennas operating at 13.56 MHz for the near-field communication (NFC) band. The effect of distance and antenna size on the link parameters such as inductance, resistance and mutual coupling is studied, prior to the study of their effects on WTE. The accuracy of the procedure is cross-validated using two methods; analytically and using full wave simulations. The simulation then is verified using lab measurement setup at real scene environment. Trends of the resulting curves using both methods indicated good agreements, and optimal miniature antenna for the best wireless transfer efficiency (WTE) is able to be quickly determined. A miniature antenna is able to achieve 4% wireless transfer efficiency improvement with 47% antenna size reduction. Such method can be applied to efficiently estimate a low-cost WTE system setup, besides enabling the integration of self-tuning or reconfigurability features in such systems for a known initial antenna size to mitigate changes to its operating distance
    corecore