53 research outputs found

    Dispersion interactions between semiconducting wires

    Get PDF
    The dispersion energy between extended molecular chains (or equivalently infinite wires) with non-zero band gaps is generally assumed to be expressible as a pair-wise sum of atom-atom terms which decay as R−6R^{-6}. Using a model system of two parallel wires with a variable band gap, we show that this is not the case. The dispersion interaction scales as z−5z^{-5} for large interwire separations zz, as expected for an insulator, but as the band gap decreases the interaction is greatly enhanced; while at shorter (but non-overlapping) separations it approaches a power-law scaling given by z−2z^{-2}, \emph{i.e.} the dispersion interaction expected between \emph{metallic} wires. We demonstrate that these effects can be understood from the increasing length scale of the plasmon modes (charge fluctuations), and their increasing contribution to the molecular dipole polarizability and the dispersion interaction, as the band gaps are reduced. This result calls into question methods which invoke locality assumptions in deriving dispersion interactions between extended small-gap systems.Comment: 8 pages, 5 figure

    Ab initio atom-atom potentials using CamCASP: Many-body potentials for the pyridine dimer

    Get PDF
    15 pages, 12 figures, part 2 of a two part work15 pages, 12 figures, part 2 of a two part workIn Part I of this two-part investigation we described a methodology for the development of robust, analytic, many-body atom-atom potentials for small organic molecules from first principles and demonstrated how the CamCASP program can be used to derive the damped, distributed multipole models for pyridine. Here we demonstrate how the theoretical ideas for the short-range models described in Part I, which are implemented in the CamCASP suite of programs, can be used to develop a series of many-body potentials for the pyridine system. Even the simplest of these potentials exhibit r.m.s. errors of only about 0.6kJ mol-1 for the low-energy pyridine dimers, significantly surpassing the best empirical potentials. Our best model is shown to support eight stable minima, four of which have not been reported in the literature before. Further, the functional form can be made systematically more elaborate so as to improve the accuracy without a significant increase in the human-time spent in their generation. We investigate the effects of anisotropy, rank of multipoles, and choice of polarizability and dispersion models

    ISA-Pol: distributed polarizabilities and dispersion models from a basis-space implementation of the iterated stockholder atoms procedure

    Get PDF
    Recently we have developed a robust, basis-space implementation of the iterated stockholder atoms (BS-ISA) approach for defining atoms in a molecule. This approach has been shown to yield rapidly convergent distributed multipole expansions with a well-defined basis-set limit. Here we use this method as the basis of a new approach, termed ISA-Pol, for obtaining non-local distributed frequency-dependent polarizabilities. We demonstrate how ISA-Pol can be combined with localization methods to obtain distributed dispersion models that share the many unique properties of the ISA: These models have a well-defined basis-set limit, lead to very accurate dispersion energies, and, remarkably, satisfy commonly used combination rules to a good accuracy. As these models are based on the ISA, they can be expected to respond to chemical and physical changes naturally, and thus they may serve as the basis for the next generation of polarization and dispersion models for ab initio force-field development.Comment: 18 pages, 9 figure

    Ab Initio Atom-Atom Potentials Using CAMCASP: Theory and Application to Many-Body Models for the Pyridine Dimer

    Get PDF
    Creating accurate, analytic atom−atom potentials for small organic molecules from first principles can be a time-consuming and computationally intensive task, particularly if we also require them to include explicit polarization terms, which are essential in many systems. We describe how the CamCASP suite of programs can be used to generate such potentials using some of the most accurate electronic structure methods currently applicable. We derive the long-range terms from monomer properties and determine the short-range anisotropy parameters by a novel and robust method based on the iterated stockholder atom approach. Using these techniques, we develop distributed multipole models for the electrostatic, polarization, and dispersion interactions in the pyridine dimer and develop a series of many-body potentials for the pyridine system. Even the simplest of these potentials exhibits root mean square errors of only about 0.6 kJ mol −1 for the low-energy pyridine dimers, significantly surpassing the best empirical potentials. Our best model is shown to support eight stable minima, four of which have not been reported before in the literature. Further, the functional form can be made systematically more elaborate so as to improve the accuracy without a significant increase in the human-time spent in their generation. We investigate the effects of anisotropy, rank of multipoles, and choice of polarizability and dispersion models

    Characterization of the fullerene derivative [60]PCBM, by high-field carbon, and two-dimensional NMR spectroscopy, coupled with DFT simulations

    Get PDF
    High-resolution (600 MHz) 1H and 13C chemical shift and 2D HETCOR NMR spectra of [60]PCBM were recorded. Resonances from every carbon atom of the ester, phenyl and cyclo-fullerenyl groups, were fully accounted. Assignments of the fullerene cyclopropa-ring, and all phenyl and ester carbons to their respective resonances were based on a HETCOR 2D NMR spectrum. Remaining fullerene assignments were made to a high level of confidence with the aid of an ωB97X hybrid HF/DFT simulation of the 13C NMR spectrum employing a triple zeta Dunning-type basis set. The best result was obtained with the range-separation parameter ω set effectively to zero. This indicates that the fraction of HF in the HF/DFT hybrid at very short range is the dominant factor in achieving good NMR results, that ωB97X with its 15.77% HF fraction at rij = 0 seems very well suited, and that allowing the HF fraction to increase with range is not particularly beneficial. The resulting spectrum had a remarkable qualitative agreement with experiment with a very low mean absolute error for fullerene carbons of 0.09 ppm, which was considerably lower than the 0.28 ppm of the more commonly used B3LYP/6-31G(d,p) method

    Molecular dynamics study of CO2 absorption and desorption in zinc imidazolate frameworks

    Get PDF
    This research utilised two high-performance computing facilities. Development of the force field was carried out using Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. The molecular dynamics simulations were carried out using the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk), with access made available through our membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202). MG and CY were supported by both the China Scholarship Council and Queen Mary University of London. AM was supported by a European Union Marie Sklodowska-Curie fellowship

    X-ray total scattering study of regular and magic-size nanoclusters of cadmium sulphide

    Get PDF
    Four kinds of magic-size CdS clusters and two different regular CdS quantum dots have been studied by x-ray total scattering technique and pair distribution function method. Results for the regular CdS quantum dots could be modelled as a mixed phase of atomic structures based on the two bulk crystalline phases, which is interpreted as representing the effects of stacking disorder. However, the results for the magic-size clusters were significantly different. On one hand, the short-range features in the pair distribution function reflect the bulk, indicating that these structures are based on the same tetrahedral coordination found in the bulk phases (and therefore excluding new types of structures such as cage-like arrangements of atoms). But on the other hand, the longer- range atomic structure clearly does not reflect the layer structures found in the bulk and the regular quantum dots. We compare the effects of two ligands, phenylacetic acid and oleic acid, showing that in two cases the ligand has little effect on the atomic structure of the magic-size nanocluster and in another it has a significant effect
    • …
    corecore