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Abstract

Creating accurate, analytic atom–atom potentials for small organic molecules from first
principles can be a time-consuming and computationally intensive task, particularly if we also
require them to include explicit polarization terms, which are essential in many systems. We
describe how the CamCASP suite of programs can be used to generate such potentials using
some of the most accurate electronic structure methods currently applicable. We derive the
long-range terms from monomer properties, and determine the short-range anisotropy parame-
ters by a novel and robust method based on the iterated stockholder atom approach. Using these
techniques we develop distributed multipole models for the electrostatic, polarization and dis-
persion interactions in the pyridine dimer, and develop a series of many-body potentials for
the pyridine system. Even the simplest of these potentials exhibits r.m.s. errors of only about
0.6kJ mol−1 for the low-energy pyridine dimers, significantly surpassing the best empirical po-
tentials. Our best model is shown to support eight stable minima, four of which have not been
reported in the literature before. Further, the functional form can be made systematically more
elaborate so as to improve the accuracy without a significant increase in the human-time spent
in their generation. We investigate the effects of anisotropy, rank of multipoles, and choice of
polarizability and dispersion models.

∗To whom correspondence should be addressed
†School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS, U.K.
‡University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.

1



1 Introduction
Electronic structure methods for the interaction energy have come a long way since the mid-
nineties, when the water dimer represented the largest system for which accurate, ab initio inter-
molecular interaction energies could be calculated. We can now calculate interaction energies for
small organic molecules like pyridine and benzene in hours on a single processor,1–3 and medium
sized molecules like cyclotrimethylene trinitramine (RDX),4 base pairs,5 and tetramers of amino
acids.6 Part of the reason for this is the increase in our computational resources, but more impor-
tant are the new developments in electronic structure methods. For the field of intermolecular in-
teractions, the development of symmetry-adapted perturbation theory based on density-functional
theory, or SAPT(DFT), has done much to improve both the accuracy and the range of applicability
of theoretical methods.1,2,7–13

However, such calculations cannot be used on the fly in most molecular simulations, as the
computational cost is too high, and we need to represent the interaction energy by an analytic
potential. Such potentials are commonly expressed in terms of the many-body expansion, where the
interaction energy of a cluster of interacting molecules is partitioned into two-body contributions
plus corrections arising from triplets, quartets and larger clusters of molecules. That is,

VABC... =
∑
X<Y

VXY +
∑

X<Y<Z

∆VXYZ + · · · , (1)

where VXY is the interaction energy between molecules X and Y in the absence of all other molecules,
but in the geometry found in the complete system, while ∆VXYZ is the three-body correction, de-
fined as

∆VXYZ = VXYZ − VXY − VXZ − VYZ

and VXYZ is the energy of the XYZ cluster in the absence of all other molecules, but in the geometry
found in the complete system. Four-body, five-body and other many-body corrections are defined
in a similar manner.

The success of this expansion depends on its rapid convergence. In any molecular system with
distinct interacting units, the two-body terms will dominate, but the many-body terms can con-
tribute as much as 30% of the interaction energy for clusters of polar molecules,14–16 and can be
essential for getting the structure and properties correct. For example, three and four-body effects
have been shown to be responsible for the tetrahedral structure of liquid water.17 The many-body
polarization energy has also been shown to be an important discriminator in the relative lattice
energies of molecular crystals when the structures differ considerably in their hydrogen-bonding
motifs.18

A three-body implementation of SAPT(DFT) does exist,19 but the computational cost makes
on-the-fly methods even more impractical, and although three-body non-additive interactions make
up the bulk of the many-body non-additivity in systems like water, non-additive effects beyond
this level cannot be neglected.17 If the constituent bodies in a cluster are small enough, it would
be possible to use an electronic structure method like SAPT(DFT) or CCSD(T) (coupled-cluster
singles and doubles with non-iterated triples) for the two and three-body terms in the many-body
expansion, and an appropriate approximation for the other terms. But more generally this approach
would make formidable computational demands, and it is necessary to use analytic intermolecular
potentials in many applications.
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Analytic intermolecular potentials have been in use for many decades. (See ref. 20 for a re-
view.) In the past, most have been ‘pair potentials’, including only two-body terms. In any molec-
ular system with distinct interacting units, the two-body terms will dominate, but the many-body
terms can be essential for getting the structure and properties correct. The effects of many-body
terms have often been included in an approximate ‘average’ manner through adjustment of the
empirical parameters. This is done in empirical potentials for water, which typically feature an
enhanced dipole moment to mimic the increased average dipole of the water molecule in the con-
densed phase. While such pair potentials are still widely used, it is increasingly recognised that it is
necessary to take account of the many-body effects explicitly, particularly to account for the effects
of electrostatic polarization,18,21,22 but also to account for many-body dispersion effects,23–25 and,
as we shall see, to account for intermolecular charge delocalisation, or charge transfer (CT).

Potentials with this level of complexity, accuracy and detail cannot be obtained empirically.
Instead we must turn to theoretical methods. Ab initio-derived potentials are by no means new,
and indeed there are a number of accurate potentials in the published literature (see for example
refs. 26–29). These potentials have typically been obtained for small dimers, but recently exam-
ples involving medium sized systems have become available.4,30–32 There are a few common ideas
used in the creation of these and other ab initio potentials. The first is that they are all based on
a distributed model; that is, the interaction energy between molecules is represented as the sum
of contributions between pairs of atoms. Secondly, most are not polarizable, so many-body polar-
ization terms are missing (though polarization may be included at the two-body level). Thirdly,
in all cases, long-range parameters have been derived from the unperturbed molecules, which can
dramatically simplify the number of free parameters in the fit. Finally, the short-range parameters
are usually then fitted to a set of ab initio interaction energies calculated using a suitable electronic
structure method.

The above procedure works reasonably well, but it has a number of deficiencies. First and
foremost is the usual lack of many-body polarization effects. Second, there is much uncertainty
associated with fitting the short-range exponential terms in a system of medium sized molecules.
These uncertainties are largely related to sampling: we are usually not sure that we have enough
data to define the terms in the potential. This is particularly troublesome for the larger systems,
which not only have a larger number of free parameters to fit, but which also incur considerable
computational expense to calculate the ab initio interaction energies needed for the fit. Addition-
ally, the short-range terms are usually exponential in form, and it is very difficult to fit a sum
of exponentials while also requiring that the fit parameters remain physically sensible and trans-
ferable. Some of these difficulties can be partially alleviated by iterating the process and adding
additional data at important configurations,30 but on the whole this approach is unsatisfactory and
tedious, and an alternative is needed.

The alternative we describe in this paper is to compute directly most of the potential param-
eters, including those associated with the short-range part of the potential, and keep the fitting to
a minimum. In many ways this is not a new strategy; indeed, a similar technique has been imple-
mented by Schmidt and co-workers,33–35 who have used many of the techniques we will describe
in this paper to develop a family of transferable potentials with a strong physical basis. However,
so far these have been isotropic potentials of moderate accuracy, with a strong focus on ease of
creation and transferability. As we will demonstrate here, we bring a new level of fidelity, accuracy
and reliability to the procedure, using the many tools we have developed in recent years and have
implemented in the CamCASP36 program. We begin this paper with a description of the overall
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strategy, then describe some of the algorithms we have implemented in the CamCASP suite of pro-
grams to implement the strategy. In particular, partitioning the electron density using the iterated
stockholder atom procedure is very effective in overcoming the difficulties in fitting the short-range
potential. We shall apply these methods to the pyridine dimer and discuss the resulting potentials.

2 The problem and definitions
The goal is to find an analytic potential Vint that accurately models the two-body SAPT(DFT)
interaction energy

E(1−∞)
int = E(1)

elst + E(1)
exch + E(2)

IND + E(2)
DISP + δHF

int . (2)

(We will use E throughout to denote the computed energy terms and V to denote their analytic rep-
resentations.) Here E(1)

elst and E(1)
exch are the first-order electrostatic and exchange-repulsion energies,

E(2)
IND = E(2)

ind,pol + E(2)
ind,exch is the total second-order induction energy, E(2)

DISP = E(2)
disp,pol + E(2)

disp,exch is
the total dispersion energy,37 and δHF

int is the estimate of effects of third and higher order, primarily
induction.38,39 The broad strategy we have adopted to determine Vint has been described in some
detail in a review article.40 While many of the details have changed, the essence of the method
remains as described there, so only a high-level description will be provided here.

First of all, we represent the potential Vint as

Vint =
∑
a∈A

∑
b∈B

Vint[ab](rab,Ωab), (3)

where, a and b label sites (usually taken to be atomic sites) in the interacting molecules A and B,
rab is the inter-site separation, Ωab is a suitable set of angular coordinates that describes the relative
orientation of the local axis systems on these sites (see ch. 12 in ref. 20), and Vint[ab] is the site–site
potential defined as

Vint[ab] = Vsr[ab] + Velst[ab] + Vdisp[ab] + Vpol[ab]. (4)

The terms in Vint[ab] model the corresponding terms in E(1−∞)
int . Vsr[ab] is the short-range term,

which mainly describes the exchange–repulsion energy, but also includes some other short-range
effects, discussed in §6:

Vsr[ab] = G exp [−αab(Ωab)(rab − ρab(Ωab))], (5)

where ρab(Ωab) is the shape function for this pair of sites, which depends on their relative orien-
tation Ωab, and αab is the hardness parameter which may also be a function of orientation. G is
a constant energy which we will take to be 10−3 hartree. Velst[ab] is the expanded electrostatic
energy:

Velst[ab] = Velst[ab]
(
rab,Ωab,Qa

t ,Q
b
u, β

ab
elst

)
; (6)

Qa
t is the multipole moment of rank t for site a, where, using the compact notation of ref. 20,

t = 00, 10, 11c, 11s, · · · , and βab
elst is a damping parameter. The dispersion energy Vdisp[ab] depends

on the anisotropic dispersion coefficients Cab
n (Ωab) for the pair of sites, and on a damping function
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fn that we will take to be the Tang–Toennies41 incomplete gamma functions of order n + 1:

Vdisp[ab] = −

12∑
n=6

fn

(
βab

disprab

)
Cab

n (Ωab)r−n
ab (7)

The final term Vpol[ab] is the polarization energy, which is the long-range part of the induction en-
ergy.42 Vpol[ab] depends on the multipole moments and the polarizabilities αa

tu, which are indexed
by pairs of multipole components tu (for details see refs. 20,43):

Vpol[ab] = Vpol[ab]
(
Qa

t ,Q
b
u, α

a
tu, α

b
tu, β

ab
pol

)
. (8)

There are a few points to note about the particular form of the potential Vpol[ab]. Although
formally written in the form of a two-body potential, many-body polarization effects are included
through the classical polarization expansion.20 Also, we will normally define the multipole mo-
ments and polarizabilities to include intramolecular many-body effects implicitly, that is, we use
the multipoles and polarizabilities of atoms-in-a-molecule, localized appropriately. To this form of
the potential we could add a three-body dispersion model, but this is not addressed in this paper.

3 Strategy
There are many parameters in such a potential and our goal is to compute as many of these param-
eters as possible, and keep the fitting of the remainder to a minimum. Additionally, we will adopt
a hierarchical approach to the fitting process that helps to guarantee confidence in the parameter
values. There are three main parts to the process, and these involve the following:

• Long-range terms: The electrostatic, polarization and dispersion interaction energy compo-
nents possess expansions in powers of 1/R, where R is the centre-of-mass separation (for
small systems) or, more generally, the inter-site distance in a distributed expansion. Multi-
pole moments are functions of the unperturbed molecular densities and may be derived us-
ing a variety of methods, the most common being the distributed multipole analysis (DMA)
technique.44,45 But, using a basis-space algorithm of the iterated stockholder atom (ISA) pro-
cedure46 termed the BS-ISA algorithm,47 we have demonstrated that the ISA/BS-ISA-based
distribution yields a more rapidly convergent multipole expansion with properties that make
it ideal for modelling. The distributed polarizabilities and dispersion coefficients are obtained
using the Williams–Stone–Misquitta (WSM) technique.43,48–50 With this approach we may
consider the long range parameters in the potential Vint as fixed, though, we may optionally
tune them if appropriate.

• Damping: All three multipole expansions need to be damped at short range, when over-
lap effects become appreciable and the 1/R terms start to exhibit mathematical divergences.
Damping will not be applied to the electrostatic expansion as it is not usually needed, but
it can be applied if necessary.51 It is crucial to damp the polarization and dispersion expan-
sions as the mathematical divergence of these expansions is usually manifest at accessible
separations, and must be controlled if sensible expansions are needed. For the dispersion
expansion we use a single damping coefficient based on the vertical ionization potentials IA
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and IB (measured in atomic units) of the interacting molecules:50

βab
disp ≡ β

AB
disp =

√
2IA +

√
2IB. (9)

This single-parameter damping is almost certainly not ideal, and we should rather use damp-
ing parameters that depend on the atomic types, and optionally, on their relative orientation.
We will propose such a more elaborate, but still non-empirical model in a forthcoming pa-
per.52

The damping of the polarization expansion is less straightforward and will be discussed in
detail below.

• Short-range energies: If the damped multipole (DM) expanded energies are removed from
the interaction energy E(1−∞)

int , we obtain the remainder which is the short-range energy:

E(1−∞)
sr = E(1)

exch + (E(1)
elst − V (1)

elst[DM])

+ (E(2)
IND + δHF

int − V (2−∞)
pol [DM])

+ (E(2)
DISP − V (2)

disp[DM])

= E(1)
sr + E(2−∞)

sr . (10)

Here we have partitioned the short-range energy into a first-order contribution E(1)
sr which will

be dominant, and the second- to infinite-order contribution E(2−∞)
sr which will be primarily the

infinite-order charge-transfer energy. In the above expression, V (1)
elst[DM] and V (2)

disp[DM] are
the multipole expanded forms of the electrostatic and dispersion energies, and V (2−∞)

pol [DM] is
the infinite-order (iterated) multipole-expanded polarization energy. In principle, the various
contributions to E(1−∞)

sr are not expected to depend on dimer geometry in the same way and
they should be modelled separately. However, we have previously showed that the dominant
contributions to E(1)

sr —the first-order exchange and penetration energies—are proportional
to each other,47 and here we will show that the charge-transfer contribution is also nearly
proportional, so we shall model all parts of E(1−∞)

sr together as a single sum of exponential
terms:

Vsr =
∑
a∈A

∑
b∈B

Vsr[ab] (11)

where each Vsr[ab] has the form of eq. (5).

• Sampling dimer configuration space: In order to ensure a balanced fit, it is important to en-
sure that we sample the six dimensional dimer configuration space adequately. For such a
high dimensional space the sampling needs to be (quasi) random, and in earlier work31,32,40

we have described how this can be done using a quasi random Sobol sequence and Shoe-
make’s algorithm53 (see the supplementary information for a brief description of this algo-
rithm). This algorithm has been implemented in the CamCASP program and ensures that we
cover orientation space randomly, but uniformly. Unless otherwise indicated, dimer config-
urations will be obtained using this algorithm.
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• Fitting the short-range terms: first-order energies: A direct fit to the terms in Vsr usually leads
to unphysical parameters and therefore should be avoided. Additionally, it is difficult to sam-
ple the high-dimensional configuration space densely enough to define the shape anisotropy
of the interacting sites. This is particularly true for the larger molecular systems, for which
the computational cost of calculating the second to infinite order SAPT(DFT) interaction
energies can be appreciable, thus precluding the possibility of adequate sampling. One pos-
sibility in this case is to reduce the complexity of Vsr by, for example, keeping only isotropic
terms in the expansions for the hardness parameter and the shape functions, but this may not
be appropriate when high accuracies are needed.

In previous work31 we addressed this problem using the density-overlap model54–56 to par-
tition the first-order short-range energies, E(1)

sr , into contributions from pairs of atoms. This
partitioning allows us to fit the terms for each pair of sites ab and obtain a first guess at
V (1)

sr [ab], while avoiding fitting the sum of exponential terms directly. In §6.2 we provide
more detail on how this is done, and show how the parameters in eq. (11) can be determined
with a high degree of confidence if we use a density partitioning method based on the ISA
method. As we shall see, this procedure effectively eliminates the basis-set limitations seen
in our earlier attempts. Moreover, this step uses the first-order energies only, and these ener-
gies are not only computationally inexpensive, but may be calculated using a monomer basis
set, so a dense coverage of configuration space may be used to determine good initial guesses
for the parameters in V (1)

sr . In this manner, atomic shape functions may be determined easily
and reliably.

• Constrained relaxation: At various stages in the fitting process we will relax a fit with con-
straints applied. The idea here is to obtain a good guess for the parameters in the fit in a man-
ner that ensures that they are well-defined. Subsequently, these parameters may be relaxed
while pinning them to the predetermined values. Consider a fitting function g(p0, p1, · · · , pn),
where pi are the free parameters in the fit. If our initial guess for these are p0

i , then in a con-
strained relaxation we would optimize the function

G(p0, p1, · · · , pn) = g(p0, p1, · · · , pn)

+

n∑
i=0

ci(pi − p0
i )2, (12)

where ci are suitable constraint strength parameters that should be associated with our con-
fidence in the initial parameter guesses p0

i . In a Bayesian sense, the p0
i are our prior values

and the ci will be related to the prior distribution. As data is included, the parameters pi may
deviate from their initial values. In this manner, a fit may be performed with very little data
and we ensure that no parameter attains an unphysical value.

• Relaxing V (1)
sr to E(1)

sr : Having obtained the first guess for V (1)
sr , we may now perform a con-

strained relaxation of the parameters in V (1)
sr to fit E(1)

sr better. Symmetry constraints to the
shape-function parameters may also be imposed at this stage.

• Relaxing V (1)
sr to include higher-order energies: The parameters in V (1)

sr may now be further
relaxed to account for the higher order short-range energies, E(2−∞)

sr , thereby obtaining the full
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short-range potential Vsr. The higher-order short-range energies will normally be evaluated
on a much sparser set of points, so the constraints used in this relaxation step usually need
to be fairly tight, and the anisotropy terms should probably be kept fixed at this stage unless
enough data can be made available.

• Overall relaxation and iterations: The relaxation steps may be repeated as additional data is
added. This is a common strategy, but here we do the relaxation with fairly tight constraints.
Additional dimer energies are best calculated at special configurations on the potential en-
ergy surface. These would include stable minima and regions of configuration space near
minima. A suitably converged fit is one which is stable with respect to the inclusion of addi-
tional data.

Some of these steps have already been used to create accurate ab initio potentials,31,32 and
indeed, some of these ideas have been used and developed by other research groups (see for ex-
ample, Refs. 30,56,57). What is unique to this work is the manner in which these steps have been
combined with advanced density-partitioning methods, distribution techniques and a hierarchical
calculation of intermolecular interaction energies, so as to obtain intermolecular interaction poten-
tials easily and reliably and with high accuracy. We describe most of these steps in detail below.

4 Numerical details
The geometry of the pyridine molecule was optimized using the Gaussian03 program58 using
the PBE0 functional59 and the cc-pVTZ Dunning basis set.60 The C2v point group symmetry was
imposed during the optimization.

4.1 Comments on the kinds of basis sets
We use several kinds of basis sets to calculate the various data needed for the intermolecular po-
tential of pyridine. The SAPT(DFT) interaction energies require diffuse monomer basis sets aug-
mented with mid-bond basis functions to converge the dispersion energy, and additionally basis
functions located on the partner monomer – the so called far-bond functions — to converge the
charge-transfer component of the induction energy. The resulting basis is referred to as the MC+

basis type.61 The δHF
int term requires a calculation of the super-molecular interaction energy at the

Hartree–Fock level, and therefore needs to be calculated using a dimer-centered basis. In both cases
the density-fitting needed for the SAPT and SAPT(DFT) energies is done in a dimer-centered aux-
iliary basis, possibly augmented with a suitable mid-bond set. For high accuracies the Cartesian
form of the auxiliary basis is used.

We compute the large set of first-order energies in a monomer-centered basis and subsequently
rotate all quantities to the required dimer orientation. However, for accurate first-order interaction
energies, the auxiliary basis used in these calculations must still be the dimer-centered type. Addi-
tionally, in this case we use the spherical form of the basis functions as the CamCASP programme
is, as yet, unable to rotate objects calculated using Cartesian functions.

Monomer properties are normally calculated in a monomer-centered basis that is taken to be the
monomer part of the basis set used for the SAPT(DFT) energies. However this is not optimal as the
additional off-atomic basis functions used in the MC+ basis form have the effect of increasing the
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size of the equivalent monomer-centered basis set. Consequently, it is advantageous to calculate
the monomer properties in a larger, more diffuse monomer basis as this would better match the
multipole expanded energies with those from the non-expanded SAPT(DFT) calculations.

4.2 Basis set details
The distributed molecular properties were calculated using asymptotically corrected PBE0 (PBE0/AC)
with the d-aug-cc-pVTZ Dunning basis.62 The density-functional calculation was performed using
a modified version of the DALTON 2.0 program63 with modifications made using a patch provided
as part of the Sapt2008 suite of programs.64 The asymptotic correction was performed using the
Fermi–Amaldi long-range form of the exchange potential with the Tozer–Handy splicing func-
tion65 and a vertical ionization potential of 0.3488 a.u., calculated using a ∆-DFT procedure with
the PBE0 functional and an aug-cc-pVTZ basis set. The CamCASP program36 was used to evaluate
the distributed multipole moments using both DMA and ISA algorithms, and distributed static and
frequency-dependent polarizabilities and dispersion coefficients using the WSM algorithm.43,48–50

For the ISA calculation the auxiliary basis was constructed from the RI-MP2 aug-cc-pVQZ fit-
ting basis66,67 with s-functions replaced with those from ISA-set2 supplied with the CamCASP
program.47

Interaction energy calculations using SAPT(DFT) were performed using the CamCASP pro-
gram with molecular orbitals and eigenvalues calculated with the DALTON 2.0 program using
the PBE0/AC functional described above. Second-order SAPT(DFT) interaction energy calcu-
lations were performed using the Sadlej-pVTZ basis in the MC+ format (monomer basis plus
mid-bond functions) with a 3s2p1d mid-bond set23 placed on a site determined using a dispersion-
weighted algorithm.68 The DC+ form of the RI-MP2 aug-cc-pVTZ auxiliary basis66,67 with Carte-
sian GTOs was used for density-fitting with a 3s3p3d2 f 1g fitting mid-bond set with exponents
s: (1.1061,0.5017,0.2342), p: (0.94,0.5,0.25), d: (0.9,0.6,0.3), f : (0.7,0.4), g: (0.65). The hybrid
ALDA+CHF kernel was used in all SAPT(DFT) calculations. Kernel integrals were calculated
initially within the DALTON 2.0 program, but subsequently they were computed internally in
CamCASP with the ALDA part of the kernel constructed from Slater exchange components and
PW91 correlation kernel.69 The δHF

int correction was evaluated using the DC+ form of the Sadlej
pVTZ basis with a corresponding DC+ auxiliary basis set formed from the RI-MP2 aug-cc-pVTZ
fitting basis and 3s3p3d2 f 1g fitting mid-bond set.

Additionally, first-order SAPT(DFT) interaction energies used in the initial stage of the fit were
calculated using a monomer-centered (MC) Sadlej-pVTZ basis70 and a dimer-centered (DC) RI-
MP2 aug-cc-pVTZ fitting basis.66,67 The density-functional calculations on the monomers were
performed once using the PBE0/AC functional, and the molecular orbitals were suitably rotated
within CamCASP for subsequent first-order interaction energy calculations. For this purpose, due
to current requirements within CamCASP, the spherical form of the Gaussian-type orbitals (GTOs)
was used for the auxiliary basis set.

4.3 Data sets
In §3 we have described how intermolecular interaction potentials may be developed in multiple
stages, with more accurate, but less extensive data sets used in each successive stage. The pyridine
dimer potentials we describe below have been developed using three data sets:
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• Dataset(0): First-order energies calculated on a set of 3515 pseudo-random dimer geometries
obtained using Shoemake’s algorithm as described above. This data set was used in the first
stage of the fitting process to obtain the initial short-range parameters using the distributed
density-overlap model.

• Dataset(1): Infinite-order SAPT(DFT) interaction energies calculated on a set of 500 pseudo-
random dimers also obtained using Shoemake’s algorithm. This data set was used in refining
the dispersion model, in fitting the charge-transfer contribution to the interaction energy, and,
in the final stage, to tune the total interaction energy models.

• Dataset(2): Infinite-order SAPT(DFT) interaction energies calculated on a set of 257 dimers
obtained as special points (minima) from early versions of the pyridine potential develop-
ment. These dimers are significantly lower in energy than those from Dataset(1). This data
set served two purposes: Firstly, as it contained dimer geometries significantly different from
those found in Dataset(1), it provided us with an independent means of assessing the quality
of the fits. Secondly, in the final stage, this data set was used to tune the total interaction
energy models.

• Dataset(3): Infinite-order SAPT(DFT) interaction energies calculated on a set of 250 pseudo-
random dimers in a manner similar to Dataset(1). This set will be used only in the assessment
of the models.

5 Long-range methods
One of the fundamental advantages of intermolecular perturbation theories like SAPT and
SAPT(DFT) over supermolecular methods is that the energy components from perturbation the-
ory have well-defined multipole expansions.71 Therefore the long-range form of these energies
can be derived from molecular properties such as the multipole moments and static and frequency-
dependent density-response functions. This has the advantage that the asymptotic part of the poten-
tial energy surface is obtained directly, that is, without fitting. Additionally, the long-range potential
parameters are fully consistent with the short-range energies from the perturbation theory.

In the CamCASP suite of programs, we have implemented a number of algorithms for calculat-
ing the distributed forms of the long-range expansions of the electrostatic, polarization (induction)
and dispersion energies. The algorithms permit a considerable degree of freedom in the model,
so models may be more or less complex as the application requires. The long-range terms in the
model can be derived directly from monomer properties, but there is a conflict between accuracy
and computational efficiency. We will aim to model most of the contributions to the interaction
energy separately, using several versions ranging from accurate but computationally expensive to
less accurate but cheaper. For example, electrostatic models may be constructed using multipole
models from rank 0 (charges only) up to rank 4; or mixed rank models may also be considered,
with high ranking multipoles included only on some sites. This allows a considerable degree of
flexibility in constructing the total interaction energy model. For this approach to work, we will
need to ensure that each part of the model is sufficiently accurate, with accuracy measured in a
meaningful manner. Typically, we will expect to reduce r.m.s. errors against some SAPT(DFT)
reference to less than 1 kJ mol−1, and preferably less than 0.5 kJ mol−1.
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5.1 Electrostatic models
Distributed multipole analysis is a well established procedure for obtaining accurate electrostatic
models from an ab initio wavefunction. We use the revised version of the procedure45 which re-
duces the dependence of the multipole description on basis set, at the cost of longer computation
times. This procedure uses a scheme based on real-space grids for the density contributions arising
from the diffuse functions, while for the more compact functions in the basis the original scheme
is used. In this work the parameter controlling the switch between compact and diffuse functions
is set at 4.0, so the method is denoted DMA4.

Until recently, the DMA approach has been the standard for distributed moments, but recently
we have demonstrated47 that the ISA-based distributed multipole analysis (ISA-DMA) forms a
significantly better basis for potential development as it guarantees fast and systematic conver-
gence with respect to the rank of the expansion and a well-defined basis limit to the multipole
components, and yields penetration energies (calculated as the difference from the non-expanded
E(1)

elst) more strongly proportional to the first-order exchange energy E(1)
exch. The last aspect of the

ISA-DMA is particularly useful in model building, since the proportionality of the electrostatic
penetration energy to the first-order exchange-repulsion energy allows us to combine the two and
model their sum with a single function. For the purposes of this paper we will define the electro-
static penetration energy as47

E(1)
pen = E(1)

elst − V (1)
elst[DM], (13)

where V (1)
elst[DM] denotes the electrostatic energy calculated from the distributed multipole (DM)

expansion evaluated at convergence, which we will take to be the model with terms from ranks 0
(charge) to 4 (hexadecapole).

In fig. 7 of ref. 47 we demonstrated this aspect of the ISA-DMA moments: in contrast to the
DMA4 moments, the penetration energy derived from the ISA-DMA model at rank 4 is indeed
significantly more proportional to E(1)

exch for the pyridine dimer. This alone makes the ISA-DMA
model more appropriate for this system—or indeed, any other, as this proportionality seems to be
generally true. Here we will look at the data presented in ref. 47 differently, to show more clearly
how rapidly the DMA4 and ISA-DMA multipole expansions converge with rank.

For the construction of accurate electrostatic models, it is advisable to include atom charges,
dipoles and quadrupoles. The dipoles are needed to describe features such as lone pairs, while
quadrupoles are needed to describe π-orbital features. Octopoles and hexadecapoles can improve
the description further but the improvement is not generally worth the increased computational cost
of the model. However, for many applications, particularly for large molecules, due to program
design limitations or more fundamentally, due to computational limitations, only charge models
may be permissible. So the question arises: How do the multipole models behave when truncated
to lower orders in rank? In Figure 1 we have plotted V (1)

elst[DM] calculated with each of the two
multipole models with truncated rank against the same with all terms to rank 4 (deemed to be
converged) included. We clearly see that while the rank 4 terms are not needed in the DMA4
model, any further truncation results in unacceptably large errors and very little correlation is left
between the converged results (terms to rank 4) and those with ranks limited to 0 (charges) and
1 (charges and dipoles). In contrast, the ISA-DMA multipoles are distinctly better behaved upon
truncation, with a strong correlation between all truncated models and the fully converged energies.
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Figure 1: Scatter plot of model electrostatic energies from the DMA4 and ISA-DMA models for
pyridine dimer at various ranks. The multipole expanded electrostatic energies V (1)

elst[DM] for rank
n models, n = 0, 1, 2, 3, (i.e. including multipole moments only up to rank n) are plotted against the
energies calculated with the rank 4 model (on the x-axis). No damping has been used. The DMA4
results are in the top panel and the ISA-DMA (BS-ISA, ζ = 0.1) results are presented in the bottom
panel. The blue bar represents the ±1 kJ mol−1 error range.

This has some advantages: it may be possible to truncate the ISA-based distributed multipole model
to much lower rank, perhaps even to rank 0, without the need to re-parametrize the potential. We
shall return to this issue below.

We point out here that while the DMA4 multipole model is not directly amenable to rank
truncation, there is a way to perform a rank transformation that generally does not result in signif-
icant errors. This is done using by optimizing a distributed-multipole description using the Mulfit
program of Ferenczy et al.,72,73 in which the effects of higher-rank multipoles on each atom are
represented approximately by multipoles of lower ranks on neighbouring atoms. In this way, a
model including multipoles up to quadrupole can incorporate some of the effects of higher multi-
poles. This approach has recently been used effectively to generate simple electrostatic models for
a wide range of polycyclic aromatic hydrocarbons occurring in the formation of soot.32,74 However
the ISA-DMA treatment is consistently better.
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5.2 Polarization and charge-transfer
In this paper we distinguish between the polarization energy and the induction energy. In SAPT (or
SAPT(DFT)), the polarization energy and charge-transfer are combined in the induction energy.
We use regularised SAPT75 to separate these two contributions,42 and by polarization energy we
mean that part of the induction energy that is not associated with charge transfer.

The importance of polarizability in the interactions between polar and polarizable molecules is
now well recognized,18,76 as is the inadequacy of the common approximation of polarization effects
by the use of enhanced static dipole moments. In CamCASP we use coupled Kohn–Sham perturba-
tion theory to obtain an accurate charge-density susceptibility, α(r, r′), which describes the change
in charge density at r in response to a change in electrostatic potential at r′. Using a constrained
density-fitting-based approach,48 the charge density susceptibility is partitioned between atoms to
obtain a distributed-polarizability model αab

tu that gives the change in multipole Qb
u on atom b in re-

sponse to a change in the electrostatic potential derivative Va
t at atom a. Here u = 00 for the charge,

10 = z, 11c = x or 11s = y for the dipole, 20, 21c, 21s, 22c or 22s for the quadrupole components,
and so on; while t = 00 for the electrostatic potential, 10, 11c or 11s for the components of the
electrostatic field, 20 etc. for the field gradient, and so on. Note that the electric field components
are Ex = E11c = −V11c, Ey = E11s = −V11s and Ez = E10 = −V10.

This is a non-local model of polarizability. That is, the electric field at one atom of a molecule
can induce a change in the multipole moments on other atoms of the same molecule. This is an
impractical and unnecessarily complicated description that seems to be needed only for special
cases such as low-dimensional extended systems.77 For most finite systems, the moments induced
on neighbouring atoms b by a change in electric field on atom a can be represented by multipole
expansions on atom a, giving a local polarizability description in which the effect of a change in
electric field at atom a is described by changes in multipole moments on that atom alone. This is
a somewhat over-simplified description of the procedure, and more detailed accounts have been
given by Stone & Le Sueur,78 and by Lillestolen & Wheatley.79 The latter is a more elaborate
approach that deals rather better with the convergence issues arising from induced moments on
atoms distant from the one on which the perturbation occurs. The local polarizability model is a
much more compact and useful description. In particular, the local picture removes charge-flow
effects, where a difference in potential between two atoms induces a flow of charge between them.
Such flows of charge still occur, but they are described in terms of local dipole polarizabilities.
We point out here that the ‘self-repulsion plus local orthogonality’ (SRLO) distribution method80

can be used to eliminate the charge-flow terms altogether (for most molecules). This technique,
which is a modification of the constrained density-fitting-based distribution method48 is available
in CamCASP but has not been used for the results of this paper. The SRLO polarizabilities are
non-local and will typically need localization to be usable by most simulation programs.

The resulting localized polarizability description can be refined by the method of Williams &
Stone81 using the point-to-point responses: the change in potential at each of an array of points
around the molecule in response to a point charge at any of the points. An important advantage
of this method is that the final, refined polarization model can be chosen to suit the problem—for
example a simple isotropic dipole–dipole model, or an elaborate model with anisotropic polar-
izabilities up to quadrupole–quadrupole or higher. For a given choice of model, the refinement
procedure ensures that we obtain the highest accuracy (in an unbiased sense if sufficiently dense
grids of point-to-point responses are used) subject to the limitations of the model. The combination
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of the SAPT(DFT) calculation of local (point-to-point) responses with this refinement procedure
is referred to here as the WSM method.43,49

The quality of the WSM description can be judged by the accuracy of the interaction energy of
a point charge with the molecule. This interaction comprises the classical electrostatic energy of
interaction of the point charge with the molecular charge distribution, and the additional term, the
polarization energy, that arises from the relaxation of the molecular charge distribution in response
to the point charge. These components can be separated using SAPT(DFT). The polarization en-
ergy of pyridine in the field of a point charge is mapped in the left-hand picture of Figure 2(a).
We construct a grid on the vdW×2 surface of pyridine—that is, the surface made up of spheres
of twice the van der Waals radius around each atom—and the polarization energy is calculated
for a unit point charge at each point of the grid in turn. The remaining three maps in Figure 2(a)
show the error in the polarization energy for three local polarizability descriptions: L1 uses dipole
polarizabilities on each atom, L2 includes dipole–quadrupole and quadrupole–quadrupole polariz-
abilities, and L1,iso uses isotropic dipole polarizabilities on each atom. It is clear that the dipole-
polarizability models are rather poor, and that an accurate description needs to include quadrupole
polarizabilities.

(a) Induction

−29.0

−27.0

−25.0

−3.0

0

+3.0

SAPT(DFT) L1 L2 L1(iso)

(b) Dispersion
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−1.7

−1.0

0

+1.0

SAPT(DFT) C6 C8 C6(iso)

Figure 2: (a) Polarization and (b) dispersion energy maps and difference maps on the 2×vdW
surface of pyridine. Polarization energies have been calculated using a +1e point-charge probe and
dispersion energies with a neon atom probe. Energies in kJ mol−1.
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5.2.1 Polarization damping

If the polarization interaction between molecules is calculated using distributed multipoles for
the electrostatic potential and distributed polarizabilities for the polarization model, the effects of
molecular overlap are absent and damping is needed to avoid the so-called polarization catastro-
phe which results in unphysical energies. In our early work on this issue43 we advocated damping
the classical polarization expansion to best match the total induction energies from SAPT(DFT).
Through numerical simulations of the condensed phase and the work of Sebetci and Beran76 we
now know this to be incorrect, as it leads to excessive many-body polarization energies. The po-
larization damping must instead be determined by requiring that the classical polarization model
energies best match the true polarization energies from SAPT(DFT).42 As noted above, pertur-
bation theories like SAPT and SAPT(DFT) do not define a true polarization energy, but rather
the induction energy, which is the sum of the polarization energy and the charge-transfer energy.
Recently one of us described how regularized SAPT(DFT) can be used to split the second-order
induction energy into the second-order polarization and charge-transfer components42 which are
defined as follows:

E(2)
POL = E(2)

IND(Reg)

E(2)
CT = E(2)

IND − E(2)
IND(Reg), (14)

where E(2)
IND(Reg) is the regularized second-order induction energy. This definition leads to a well-

defined basis limit for the second-order polarization and charge-transfer energies.42 We determine
the damping needed for the classical polarization expansion by requiring that the non-iterated
model energies best match E(2)

POL. Once a suitable damping has been found, an estimate for the
infinite-order polarization energy E(2−∞)

POL is obtained by iterating the classical polarization model to
convergence.

In principle the above procedure gives us a straightforward way to define the damping: once
the form of the damping function is chosen (we use Tang–Toennies damping in this work) all
we need to do is determine the damping parameters needed by fitting to E(2)

POL energies calculated
for a suitable set of dimer orientations. Since the many-body polarization energy is built up from
terms involving pairs of sites, we should expect that the damping parameters depend on the pairs
of interacting sites, and potentially on their relative orientations. Indeed, one of us has shown42

that for small dimers the damping parameters do depend quite strongly on the site types involved.
A single-parameter damping model that depends only on the types of interacting molecules may
be constructed, but such a model is a compromise, and must usually be determined by fitting to
data biased towards the important dimer configurations only.42 The advantage of this approach is
that the model is simpler and very few evaluations of E(2)

POL are needed to determine the damping
parameter, but the disadvantage is that the model is almost certainly biased towards a few dimer
orientations, and additionally, these important orientations need to be known before the final po-
tential is constructed. The last requirement—that we need to have knowledge of the potential—is
not as serious as it may seem, as the choice of damping has no effect on the two-body interaction
potential: this choice affects the many-body polarization energy only. So it is possible to make
an informed guess for the damping parameter, determine the parameters of the intermolecular po-
tential, and subsequently re-assess this choice by examining the performance of the polarization
model at the important dimer configurations, and, if necessary, alter the model and re-fit.
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Figure 3: Second-order polarization energies vs. centre-of-mass separation R for the doubly-
hydrogen-bonded pyridine dimer, obtained from regularized SAPT(DFT) and from distributed
polarization models. Model polarization energies are reported with local WSM models with a
maximum rank of 1 (L1, top) and 2 (L2, bottom). Models are shown with a range of damping pa-
rameters using damping functions described in the text. The basin of the minimum along the radial
direction is indicated by the light blue shaded region.

The initial choice for the damping parameter in pyridine was obtained using two dimer ori-
entations: the doubly hydrogen-bonded C2h dimer, and a T-shaped dimer with the nitrogen of one
molecule pointing to the ring of the other. These were chosen so as to sample both H· · ·N and
N· · ·C interactions, though in retrospect the latter proved to be unimportant. In Figure 3 we dis-
play the second-order polarization energies calculated using various single-parameter damping
models for the C2h structure. Energies for only two of the three polarization models are shown, as
the isotropic rank 1 (L1(iso)) model is nearly identical in behaviour to the L1 model. The opti-
mum damping parameter for the L1 model lies between 1.2 and 1.3 a.u., while for the L2 model
a stronger damping between 1.0 and 1.1 a.u. is needed. To an extent, the deficiencies of the L1
model are compensated by using a weaker damping.

The single-parameter damping approach has a serious limitation. In Figure 4 we display similar
data for the T-shaped dimer orientation with the N of one molecule pointing to the centre of the
ring of the other. Here we see that the polarization models need to be considerably more heavily
damped with a damping coefficient of 0.9 a.u. for the L1 (and L1(iso)) model and one less than 0.9
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Figure 4: Second-order polarization energies vs. centre-of-mass separation R for the T-shaped pyri-
dine dimer with N pointing to the centre of the ring. See the caption of Figure 3 for a description.

a.u. for the L2 model. It is possible that we observe this large variation in the damping because of
the strong anisotropy of the molecule, and also because a single damping coefficient is not enough.
Perhaps we need to use separate damping parameters for each pair of atoms,42 or even to make the
damping parameters orientation-dependent. As a compromise, we have chosen to use the simpler
L1 model with a damping coefficient of βpol = 1.25 a.u. This model seems capable of describing
the polarization in both orientations presented here.

This approach to choosing the damping parameter remains the most problematic part of our
approach to potential development. The choice of damping parameters may seem somewhat arbi-
trary and biased to the choice of dimer configurations used to determine the damping, but this is
probably too pessimistic a view for the following reasons:

• The choice of damping does not affect the two-body interaction energy as the error in the
induction energy will be absorbed in the short-range part of the potential. The damping does
however alter the many-body polarization energy.

• We should regard this as an iterative process: the damping model will normally be assessed
and possibly changed once we have a better understanding of the full PES. Indeed this was
done in the present work; we will re-visit this issue in §12.1.
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5.3 Dispersion models
In CamCASP, we normally calculate atom–atom dispersion coefficients using polarizabilities com-
puted at imaginary frequency and localised using the WSM localization scheme. The procedure
involves integrals over imaginary frequency,82 and because the imaginary-frequency polarizability
is a very well-behaved function of the imaginary frequency the integrals can be carried out ac-
curately and efficiently using Gauss-Legendre quadrature.50 Since the dispersion coefficients are
derived from the WSM polarizability model, it is possible to choose the dispersion model to suit
the problem, for example by limiting the polarizabilities to isotropic dipole–dipole, leading to an
isotropic C6R−6 model, or by including all polarizabilities up to quadrupole–quadrupole, which
yields a model including anisotropic dispersion terms up to R−10. (This latter procedure omits
some R−10 terms arising from dipole–octopole polarizabilities, but they could be included too if
desired.) Within the constraints of the model, the WSM polarizabilities, and hence the WSM dis-
persion models will be optimized to be the best in an unbiased sense. Within these constraints,
intramolecular through-space polarization effects are fully or partially accounted for in the WSM
models.

The dispersion energy of pyridine with a neon atom probe placed on the vdW×2 surface of
pyridine is mapped in the left-hand picture of Figure 2(b). In the remaining three maps in this figure
we show the error in the dispersion energy for three local dispersion models: the C6 model includes
anisotropic C6 terms on all atoms; the C8 model additionally includes C7 and C8 contributions
between the heavy atoms; and the C6,iso model includes only isotropic C6 terms. The C10 and C12

models are not shown as they exhibit errors close to zero on the scale shown. It should be clear
that to achieve a high accuracy we need to include higher-rank dispersion effects — the dispersion
anisotropy is not apparently important in this system, though we may expect it to be important in
larger systems. Also, the errors made by both the C6 models are fairly uniform, and so the lack of
higher-order terms in these models may be compensated for by scaling the C6 coefficients. Indeed,
we have demonstrated this in a previous publication50 and will address this below.

The WSM dispersion models described above need to be suitably damped for them to be appli-
cable in a potential. We have used the Tang–Toennies83 damping functions and a single damping
parameter for all pairs of sites. The damping model needs to account for two effects: First, the
SAPT(DFT) dispersion energy, E(2)

DISP, includes the effects of penetration and exchange, which are
absent from the CnR−n expansion. Secondly, the dispersion expansion suffers from an unphysical
mathematical divergence as R → 0. For both reasons the models have to be damped. Damping
using the Tang–Toennies functions cancels out the mathematical divergence at small R and, with
an appropriate damping parameter, is also able to account for the penetration and exchange effects,
albeit approximately. We have opted for the simplest damping model, in which βdisp depends on the
interacting molecules only and is given by eq. (9). With IA = IB = 0.3488 a.u. we get βdisp = 1.67
a.u.

Figure 5 (bottom) shows the performance of the C12(iso) isotropic dispersion models for the
pyridine dimer, As can be seen from the Figure, the above damping works reasonably well for
the C12(iso) model with (unweighted) r.m.s. errors of 0.86 kJ mol−1 for dispersion energies from
Dataset(1) in the energy range −40 to 0 kJ mol−1. However, for Dataset(2) which includes more
strongly bound dimers, the model performs less well with an r.m.s. error of 2.30 kJ mol−1 in the
same energy range. The model dispersion energies are systematically overestimated for the low
energy dimers, with errors as large as 4 kJ mol−1. While these errors are just within ‘chemical ac-
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Figure 5: Scatter plot of pyridine dimer dispersion energies using various models, against refer-
ence E(2)

DISP energies calculated using SAPT(DFT). See text for details. The bar represents the ±1
kJ mol−1 error range.

curacy’, they are too large for our purposes. They may stem from the choice of damping function,
the damping parameter chosen (in particular, our use of a single, atom-pair independent isotropic
damping parameter) and also the WSM dispersion coefficients. To account for some of these de-
ficiencies, while maintaining the isotropy of the model, we have chosen to relax the dispersion
coefficients in the C12(iso) model. The relaxation was done using constrained optimisation with
harmonic constraints in the form given by eq. (12) used to pin the dispersion coefficients to the
values obtained from the WSM procedure. We used tight constraints to prevent the model param-
eters from taking on unphysical (negative) values. The relaxation was done using only the random
dimers from Dataset(1), with the low energy dimers from Dataset(2) used to assess the quality of
the relaxation. The relaxed model, C12(iso, opt), is a significant improvement, with r.m.s. errors of
0.41 kJ mol−1 on the training set of random dimers and 0.68 kJ mol−1 on the test set of low energy
dimers.

In a similar manner we have created an isotropic C6 dispersion model for this system. From
Figure 5 (top) we see that the C6(iso) model systematically underestimates the second-order dis-
persion energy. This is to be expected, as the higher ranking dispersion contributions are significant
for close dimer separations. We have previously argued43 that rather than use the C6(iso) model
directly, we should instead use a scaled model in which all dispersion coefficients are scaled by a
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constant to match the reference E(2)
DISP energies. Here we additionally optimise the scaled model in

the manner described above. The resulting model, C̃6(iso, opt) (here the tilde indicates that this is a
scaled model), exhibits an r.m.s. error of 0.68 kJ mol−1 on the training set and 1.00 kJ mol−1 on the
test set. However, such a scaled model will systematically overestimate the long-range contribution
to the dispersion energy, and this is a significant drawback: while the scaled C6(iso) model may
be used to model small, gas-phase clusters, it is not suitable for the condensed phase because the
scaling causes an excessive van der Waals pressure and the resulting structures are significantly
more dense. As one of our aims is to use the resulting potentials in the study of the condensed
phase, we cannot use the scaled model. However, we can simplify the C12(iso) model by dropping
the R−12 terms, which contribute an insignificant amount to the dispersion energy, so we have used
a C10(iso, opt) model in the potentials for pyridine.

6 Short-range energy models
The short-range part of the potential comprises several effects. All of the long-range terms are
modified at short range, as mentioned above. The multipole expansion on which the long-range
expressions are based converges more slowly or not at all at short distances, and is incorrect when
the charge densities overlap, even if it does converge. Damping can be used to correct the dis-
persion and polarization terms at short range, but in addition there are corrections arising from
electron exchange, electrostatic penetration, and charge tunneling, or charge transfer, between the
molecules.

The dominant short-range term is the exchange-repulsion: the wavefunction for two overlap-
ping molecules cannot be treated as a simple product of isolated-molecule wavefunctions, but has
to be antisymmetrized with respect to electron exchanges between the molecules. This modifies
the electron distribution and results in a repulsive energy. It is straightforward to calculate the
exchange-repulsion energy ab initio, but it has to be fitted by a suitable functional form for use in
an analytic potential.

The electrostatic interaction is also modified by the effects of overlap. If a distributed multipole
expansion is used, it will still converge at moderate overlap, but it does not converge to the non-
expanded energy, E(1)

elst. The difference between E(1)
elst and the converged multipole energy V (1)

elst[DM]
is the electrostatic penetration energy, E(1)

pen. We have previously shown47 that E(1)
pen is approximately

proportional to the first-order exchange energy, so the two terms can, in principle, be modelled
together. Alternatively a separate model for E(1)

pen can be developed, possibly based on suitable
damping functions,51 but we have not explored this possibility.

The contribution to the interaction energy from charge transfer — or, more appropriately, the
intermolecular charge delocalisation energy — appears at second and higher orders in the pertur-
bation expansion. Previously one of us has shown that this energy can be interpreted as an energy
of stabilization due to electron tunneling,42 so we may expect the charge transfer energy to decay
exponentially with separation. In principle, the charge transfer energy should be modelled as a
separate exponentially decaying term, but as we shall see, it is approximately proportional to the
first-order exchange energy and may therefore be modelled together with E(1)

exch.
Finally we will use the short-range potential to account for any residual differences between

the multipole expansions and the reference SAPT(DFT) energies. The full form of the short-range
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energy, E(1−∞)
sr , is shown in eq. (10) where we have also implicitly defined the first-order short-range

energy, E(1)
sr , and the contributions from second to infinite order, E(2−∞)

sr .

6.1 Fitting the short-range potential
The short-range part of the potential has often been represented by empirical R−12 Lennard-Jones
atom–atom terms, but for accurate potentials a Born–Mayer (exponential) atom–atom form is usu-
ally preferred (eq. (11)), and it is essential in most cases to allow it to be anisotropic, since the
non-spherical nature of bonded atoms can have a profound effect on the way that they pack to-
gether. Unfortunately, the parameters of the various atom–atom terms are strongly correlated, and
this makes the already difficult non-linear fitting problem even more troublesome. A direct fit is
generally not possible: it is hard to converge and tends to wander off into unphysical parameter
space. Parameters can be forced to stay within reasonable limits, but this introduces an element of
arbitrariness in the procedure.

It has however been found empirically that there is a close proportionality between the overlap
of the electron densities on two atoms and the exchange–repulsion energy between them. This
observation has been used to construct repulsion potentials directly from the density overlap, with
varying degrees of success.84 A better solution, which we adopt here, is to use the density overlap
only to guide the parameters in a fitted potential function to a physically meaningful region of
parameter space. Once an initial guess to the parameters has been obtained, the fit can be improved
using constrained optimisation. Further, we will achieve the final fits to E(1−∞)

sr in stages, first by
fitting to only E(1)

sr , and then by constrained relaxation to include the higher-order contributions
from E(2−∞)

sr .

6.2 The density-overlap model
It is useful at this point to review the theoretical basis for the density-overlap model. In the mid-
1970’s Kita, Noda & Inouye,54 and later, in the early 1980’s, Kim, Kim & Lee55 proposed that the
intermolecular repulsion energy of rare gas atoms could be modelled as

E(1)
exch(R) ≈ K

(
S ρ(R)

)γ
. (15)

Here K and γ are constants, and the overlap S ρ of the two interacting densities ρA and ρB, separated
by generalised vector R, is defined as

S ρ(R) =

∫
ρA(r)ρB(r)dr. (16)

Kita et al. had γ = 1 and did not consider the possibility of varying it, but Kim et al. observed
that it was close to, but less than, unity. This model was subsequently used by a number of groups
and was successfully applied to study the interactions of polyatomic molecules, and has been
investigated84,85 together with many other variants. Curiously, to the best of our knowledge, no
one seems to have realised the reason for the success of this model, nor why the constant γ is
always less than one. Before going on to the numerical details of this model we will discuss both
these issues as we will be led to a better understanding of the model and the exchange-repulsion
energies.
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First of all we should realise that although the exchange-repulsion and penetration energies are
the short-range parts of the interaction energy, these energies result from the overlap of the density
tails of the interacting densities. That is, we must consider the asymptotic form of the interacting
densities for an atomic system:86

ρ(r) = Cr2βe−2αr, (17)

where, with I as the vertical ionization energy, and Z the atomic number, we have α =
√

2I and
β = −1+ Q/α, where for an atom with nuclear charge +Z and electronic charge −N, Q = Z−N +1.
Both I and r here are in atomic units. In principle, the asymptotic form of the density overlap
integral can be obtained by using this density in eq. (16), but the exact integral is not important.
Instead we can use the result of Nyeland & Toennies87 who evaluated eq. (16) using only the
exponential term in eq. (17) to get

S ρ(R) = P(R)e−2αR, (18)

where P(R) is a low-order polynomial in the internuclear separation R. For identical densities
P(R) = (4/3)α2R2 + 2αR + 1, and for the more general case of different densities, the results of
Rosen88 may be used to obtain a closed-form expression for P(R) that is now not a low order
polynomial, but also includes exponential terms. Since S ρ is not a pure exponential, Nyeland &
Toennies argue that the exchange-repulsion energy should be proportional to S ρ(R)/R2, but this
assumes that the exchange-repulsion itself is a pure exponential, which is not the case.

The asymptotic form of the exchange-repulsion energy has been worked out by Smirnov &
Chibisov89 using the surface-integral approach and later, with a corrected proof, by Andreev.90

Their result is

E(1)
exch = KR(7/2α)−1e−2αR (19)

where K is an angular momentum-dependent constant.91 We observe that:

• The exchange-repulsion energy is not a pure exponential, as is often assumed, but is better
represented as an exponential times a function of R. This has been empirically verified by
Zemke and Stwalley 92 using spectroscopic data for alkali diatomic molecules. Also, accu-
rate analytic potentials for small van der Waals complexes have tended to use functional
forms that include a pre-exponential polynomial term.26–28 The prefactor function in eq. (19)
is not a polynomial, but it is close to linear in R for relevant values of α and R.

• The exchange-repulsion energy has an asymptotic form that is very similar to that of the
density overlap, eq. (18), but the prefactor is different. Consequently we should not expect a
direct proportionality between the two, and a better form of the density-overlap model might
use

E(1)
exch(R) ≈ K(R)S ρ(R), (20)

where K(R) is a low-order polynomial in R.

• The exponents in the asymptotic forms of the density overlap and the exchange–repulsion
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will be the same only if the wavefunctions used to evaluate them are the same. In general
this will not be the case. While the exchange–repulsion could be evaluated with electron
correlation effects included, the density-overlap integrals are more typically evaluated us-
ing Hartree–Fock densities. Therefore, the α in the exponent of eq. (18) must be replaced
by αHF = (−2εHOMO)1/2, where εHOMO is the energy of the highest occupied molecular or-
bital from Hartree–Fock theory. In this case, there will be a better agreement between the
exchange–repulsion energy and the density overlap if the exponents are made the same by
raising the latter by the power γ = (−I/εHOMO)1/2 as is done in eq. (15). Now in Hartree–Fock
theory |εHOMO| > I, so γ is always less than unity, and for the helium, neon and argon dimers
we obtain values between 0.99 and 0.97 in reasonable agreement with the empirical results
of Kim et al..

We will now use these observations to construct models for the short-range energies.
Electron charge densities obtained from density functional theory are exact, in principle. In

practice, because of the now well understood self-interaction problem with standard local and
semi-local exchange-correlation functionals, they tend to be too diffuse. This can be corrected by
applying a suitable asymptotic correction to the exchange-correlation potential.65,93 It is now usual
to apply this correction in any SAPT(DFT) calculation; without it, even energies that depend on
the unperturbed monomer densities, like the electrostatic energy, can be significantly in error. With
the asymptotic correction, the asymptotic form of the density given by eq. (17) is enforced, and
consequently γ = 1 in eq. (15).

This has important consequences for multi-atom systems where we use the overlap model to
partition E(1)

exch into contributions from pairs of atoms. This idea goes back to the work of Mitchell
& Price85 and begins with a partitioning of the densities into spatially localised contributions that
will usually be centered on the atomic locations. If we can write

ρA(r) =
∑

a

ρA
a (r), (21)

where ρA
a is the partitioned density centered on (atomic) site a, and likewise for ρB, then from

eqs. (15) and 16 we get

E(1)
exch(R) ≈

∑
ab

K
∫

ρA
a (r)ρB

b (r)dr

≈
∑
ab

KS ab
ρ (R), (22)

where S ab
ρ is the site–site density overlap. This expression may be generalised by introducing a

site-pair dependence on K as follows:

E(1)
exch(R) ≈

∑
ab

KabS ab
ρ (R) =

∑
ab

E(1)
exch[ab](R), (23)

where E(1)
exch[ab] is the first-order exchange contribution assigned to site-pair (ab). This is the dis-

tributed density overlap model. This is essentially the result obtained by Mitchell & Price but in
their case, because of their use of electronic densities from Hartree–Fock theory, they had γ < 1
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and so obtained an expression for the partitioning that is necessarily approximate.
There are a few important issues about the overlap model given in eq. (23):

• The model was originally formulated for the first-order exchange repulsion only, but, as the
other short-range energy contributions are also roughly proportional to E(1)

exch, we may use the
density-overlap model more generally for all of the short-range energy, E(1−∞)

sr . Henceforth
we will use the model in this general sense, that is, to model the short-range energy, Esr,
however we may choose to define it.

• The model allows us to partition the short-range energy into terms associated with pairs of
sites. With this partitioning, we may fit an analytical potential to individual site pairs rather
than fit the sum of exponential terms given in eq. (11). The fit to each individual term Vsr[ab]
(eq. (5)) is numerically better defined and may be achieved with relative ease.

• This is an approximation: Since the density overlap model cannot exactly model the short-
range energy, we have Esr(R) ,

∑
a,b Esr[ab](R). That is, there is a residual error that origi-

nates from the original ansatz given in eq. (15).

• Although the residual error is small compared with Esr, it needs to be accounted for to
achieve an accurate fit, particularly as the error may be a non-negligible fraction of the to-
tal interaction energy, which is generally much smaller in magnitude than Esr. This may be
achieved by constrained relaxation of the final short-range potential Vsr =

∑
ab Vsr[ab].

7 ISA-based distributed density overlap
Formally, the distributed density overlap integrals, S ab

ρ (R), defined through eqns. (21) and (23),
are particularly straightforward to evaluate using the BS-ISA algorithm47 as this algorithm pro-
vides basis-space expansions for the atomic densities ρA

a (r). However, basis-set limitations mean
that while the BS-ISA algorithm results in fairly well-defined atomic shape-functions, the atomic
densities are not well described in the region of the atomic density tails, where the density can even
attain small negative values. This not only leads to distributed density overlap integrals that can be
negative, but also results in a relatively poor correlation between the first-order exchange energies
and the density overlap integrals. This problem may be alleviated using better basis sets for the
atomic expansions, but we have not as yet explored this option.

An alternative is to evaluate S ab
ρ (R) using the atomic densities defined as

ρA
a (r) = ρA(r) ×

w̃a(r)∑
a′ w̃a′(r)

, (24)

where w̃a is the tail-corrected shape-function for site a as defined in Ref. 47 as a piece-wise func-
tion:

w̃a(r) =

wa(r) if |r| ≤ ra
0

wa
L(r) otherwise,

(25)
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where wa(r) is the atomic shape-function that is the spherical average of atomic density ρA
a (r),

and the long-range form of the shape-function is defined as wa
L(r) = Aa exp (−αa|r − Ra|), where

ra
0 is a cutoff distance, and the constants in wa

L are defined to enforce continuity and charge-
conservation.47 The shape-functions may be thought of as pro-atomic densities that encode the
ionic state of the atom in its molecular environment. This ionic state is not fixed and is instead
determined self-consistently through the ISA iterations.46 While the atomic shape-functions are
spherically symmetrical, the atomic densities are not. Now, the distributed density overlap integral
is defined as

S ab
ρ (R) =

∫ (
ρA(r)

w̃a(r)∑
a′ w̃a′(r)

) (
ρB(r)

w̃b(r)∑
b′ w̃b′(r)

)
dr. (26)

Due to the piece-wise nature of w̃a, this integral must be evaluated numerically using a suitable
atom-centered integration grid. Using techniques described by us earlier,47 we evaluate the terms
in eq. (26) in O(N0) computational effort. This is done by defining local neighbourhoods, Na and
Nb, for sites a and b. These neighbourhoods are based on the dimer configuration, so Na may
include sites that belong to monomer B, and vice versa for Nb. The neighbourhoods are usually
defined using an overlap criterion that naturally takes the basis set used into account with basis
sets containing more diffuse functions resulting in larger neighbourhoods. The integration grid,
and various terms in the integral S ab

ρ are then evaluated using sites in the intersection set Na ∩Nb.
This intersection set may be null for monomers that are sufficiently far apart. In this manner the
density overlap integrals are calculated with linear effort.

8 Potentials for pyridine
We now apply the methodology presented above to develop a set of many-body potentials for
pyridine. In a study such as this is, it is important to use a system that simultaneously presents a
challenge and also allows tests to be performed to validate the method sufficiently. We have chosen
to use the pyridine dimer as our example as it is small enough to permit accurate interaction energy
calculations using SAPT(DFT) on as dense a grid as is needed, but large enough to exhibit a varied
and complex potential energy surface (PES) with—as we shall see below—eight distinct minima.
Additionally, the pyridine molecule has a sizeable dipole moment and polarizability, so polarization
effects are expected to be important, and, as we shall see, the two-body charge-transfer, or charge-
delocalisation,42 energy is also significant. Finally, from the crystallographic studies by Price and
co-workers94 it is known that the crystal energy landscape of this molecule is complex and poses
a significant challenge for seemingly accurate empirical potentials. While we will not attempt to
use the results of this study in a crystal structure prediction, we intend to perform this test in later
work.

9 Short-range fit
The distributed density-overlap fits were performed using the CamCASP program using the Gaus-
sian/Log weighting scheme95 in which wGL(e) = exp(−α(ln(e/E0))2), where α = 1/ ln 10 and
E0 = 100 kJ mol−1. Here the parameter E0 sets the energy-scale for the fit, and it is usually chosen
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to be some large multiple of the absolute global minimum dimer energy so as to obtain a reliable
fit to the repulsive wall. The fits to individual site–site potentials Vsr[ab] were performed with the
Orient program using the same Gaussian/Log weighting scheme.

All relaxation steps were performed using the Orient program using the Boltzmann weighting
function

wBol(e) =

exp ((elow − e)/E0) for e > elow

1.0 otherwise.
(27)

Here elow is typically set to the smallest energy in the data set and the energy-scale for the fit is
set by E0 = 40 kJ mol−1 to increase the weight to lower energies. We used elow = 0 kJ mol−1 for
the relaxation of the repulsive energies, and −10 kJ mol−1 in the final relaxation step involving the
total interaction model.

9.1 Fitting strategy and atomic shape
We set out the fitting strategy for the short-range part of the potential in some detail in §3 above.
In this multi-stage approach we first fit to E(1)

sr calculated on the dense, pseudo-random set of 3515
dimers in Dataset(0). This is done via the distributed density-overlap model which allows us to
partition E(1)

sr into contributions from pairs of sites, and fit the terms in the potential for each atom-
pair individually. However, if the atoms are close to spherical, as is the case for the ISA atom
densities, the atom-pair shape function ρab(Ωab) that appears in the potential (see eq. (5)) may be
written to a good approximation as the sum of shape functions for the interacting atoms (see ch.
12 in ref. 20)

ρab(Ωab) ≈ ρa(Ωa) + ρb(Ωb). (28)

Here Ωa is a generalised angular coordinate that describes the direction of the vector from site a
to site b in the local coordinate system of site a, and likewise for Ωb, and ρa and ρb are the atomic
shape functions for atoms a and b. The atomic shape functions for all atoms of a given type should
be the same.

The shape-function additivity is observed in the first stage of the fitting when the terms in
V (1)

sr [ab] are fitted individually via the density-overlap model, but it is not exact, probably in part
because of grid sampling variability around the sites. It can however be exactly enforced in the
next stage when the short-range parameters are collectively relaxed in a constrained manner to the
E(1)

sr energies in Dataset(1). We find it best to perform this relaxation iteratively, with only those
parameters associated with a particular subset of sites relaxed at each step. With this approach the
constrained relaxation can be performed rapidly, in a computationally efficient manner. At each
step, shape-function additivity is imposed by using pinning (prior) values for the parameters from
the averaged shape-function parameters from the previous step.

In a similar manner, we may relax the resulting potential parameters to include effects from
second and higher orders in the interaction operator. However, there is no reason to expect the
shape-function additivity to hold at this stage, as the higher-order short-range effect, which is pre-
dominantly the charge-transfer (or charge-delocalisation) energy, depends on the pair of atoms
involved in a non-additive manner. In the absence of additivity, the number of independent param-
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eters in the potential would depend quadratically on the number of interacting atoms, but fortu-
nately, as we will demonstrate below, the higher-order correction can be treated as isotropic. That
is, the atom-pair shape function now becomes

ρab(Ωab) = ρa(Ωa) + ρb(Ωb) − δab, (29)

where δab is the isotropic higher-order correction.
We will now examine the effectiveness of this strategy in obtaining a series of fits to the short-

range potential for the pyridine dimer.

9.2 Fitting using the distributed density overlap model
In principle, it is straightforward to use the distributed density-overlap model described above.
We have used this approach,31,32 as have others,85,87,95,96 with a reasonable degree of success. The
problem lies in the choice of density partitioning method. There is no unique way of decomposing
a density into atom-like domains, yet the tacit assumption of the distributed density-overlap model
is that the partitioned density ρA

a is well-behaved and may be used to extract properties such as size
and shape of the atom located on site a. If this were not the case, then the potential parameters
extracted from the model would be meaningless, and indeed, a fit to eq. (5) could even be so poor
as to be useless. In the past we have used a density-fitting-based scheme to partition the density.31

This works by expressing the electronic density as a single sum over an auxiliary basis set with
functions located on the atomic nuclei, which then naturally suggests a partitioning scheme:

ρ(r) =
∑

k

dkχk(r)

=
∑

a

∑
k∈a

dkχk(r) =
∑

a

ρa(r). (30)

Here the dk are expansion coefficients and χk are Gaussian basis functions from the auxiliary basis.
We have previously argued48 that since the auxiliary basis sets are optimised on free atoms, or
homo-diatoms, they may be used in the above manner to partition the molecular density into atom-
like parts. This does seem to work, but only if small enough auxiliary basis sets are used, and even
then, the resulting atomic domains may be meaningless.

In Figure 6 we present the density-fitting-based (DF-based) atomic isodensity surfaces for the
atoms in the pyridine molecule. The total electronic density of pyridine was obtained with the
d-aug-cc-pVTZ basis using the PBE0/AC functional. We had to use the relatively less diffuse def-
TZVPP basis for the density-fitting as results with any of the more diffuse RIMP2 auxiliary basis
sets were so full of artifacts associated with the basis set over-completeness as to lead to completely
nonsensical results for the density partitioning. However, even with the relatively small def-TZVPP
basis, the DF-based density partitioning results in carbon atoms with rather unusual shapes. If this
partitioning method is used to construct a short-range potential using the density-overlap model as
described above, we obtain potentials with spurious terms in the atomic anisotropies and overall
very poor fit qualities.

In contrast, we can see in Figure 7 that the ISA-based atomic shapes obtained using the al-
gorithm described in §7 are very well-behaved. These have been obtained with the significantly

27



N C1 C2 C3

H1 H2 H3

Figure 6: The 10−3 a.u. iso-density surfaces of the density-fitting-based ‘atoms’ in pyridine. The
pyridine density was computed using a d-aug-cc-pVTZ basis, and the density-fitting was performed
using the TZVPP auxiliary basis. The colour coding indicates the anisotropic component of the
electrostatic potential on the surface arising from ISA-based atomic multipoles located on the
nuclei; that is, the atomic charge contributions are not included. The scale used varies from −0.5
V (blue), through 0 V (white), to +0.5 V (red).

larger aug-cc-pVQZ/ISA-set2 fitting basis and show none of the artifacts seen with the DF-based
scheme. Additionally, the ISA-based atoms do not show any significant differences in shape when
other basis sets are used, as long as these are large and diffuse enough. This is a significant result:
if we wish the atomic shapes to be, in some sense, universal or transferable (properties we will
not explore in this paper), we must be able to calculate the atomic shapes with an algorithm that
possesses a well-defined basis-set limit. The ISA approach is not the only such method, but for
reasons discussed in the Introduction and in ref. 47, it is one of the few partitioning methods that
has desirable numerical properties while satisfying physical and chemical expectations.

In Figure 8 we present the ISA-atomic shapes viewed in the molecular plane, along the bond
axis, or, in the case of the nitrogen atom, along the N···C3 axis. In order to highlight the atomic
anisotropies we have superimposed on the 10−3 a.u. isodensity surfaces some contours showing the
intersection with spheres centred on the atomic nuclei. These contours clearly illustrate the shape
symmetries of each of the atoms. Also included in the figure are the important shape anisotropies
for these atoms. These have been calculated by fitting E(1)

sr via the distributed overlap model using
a set of local axis frames located on the atomic centres with the x axis pointing along and out of
the bond, and the z axis perpendicular to and pointing out of the plane of the molecule. During the
relaxation step in this fit we eliminate all terms that are less than a threshold, taken to be 0.01 a.u.
The picture that emerges is remarkably simple and convincing:

• Nitrogen: The largest anisotropy term for the nitrogen atom in pyridine is the 22c term that
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N C1 C2 C3

H1 H2 H3

Figure 7: The 10−3 a.u. iso-density surfaces of the ISA-based ‘atoms’ in pyridine. The pyridine
density was computed using a d-aug-cc-pVTZ basis and the ISA calculations were performed
using the aug-cc-pVQZ/ISA-set2 auxiliary basis set. Colour coding as described in Figure 6.

is associated with the lone pair. Additionally one may include the 11c and 20 terms on the
nitrogen atoms, though these are smaller. All other terms are negligible.

• Carbon: The 20 term associated with the pz orbitals is the dominant source of anisotropy on
all carbon atoms. Of the other symmetry-allowed terms, the 11c term associated with the C–
H bond is relatively strong. The 22c terms are present, but small. Finally, C1 and C2 contain
11s terms due to the proximity of the N atom. These terms describe the in-plane distortion
of the C1/C2 densities due to N.

• Hydrogen: We have limited all hydrogen atoms to rank 1 terms only. All hydrogen atoms
possess a 11c term to describe the electronic distortion along the C–H bond and, both H1
and H2 additionally have 11s terms.

We have developed three models for the short-range terms: srModel(1) contains only isotropic
terms, in srModel(2) we have included the 22c anisotropy term on the nitrogen atom, and in sr-
Model(3) we have used all the anisotropy terms shown in Figure 8. In all three models, the hard-
ness parameters αab in eq. (5) were kept isotropic. The constrained relaxation was performed using
eq. (12) with constraint strength parameters ci chosen to be 0.1 for the isotropic parameters and
1.0 for the anisotropic terms in the ρab(Ω) expansions. This choice was made empirically on the
basis that the appropriate parameters were those that when further reduced did not result in any ap-
preciable improvement in the fit quality. The distributed density-overlap fits were performed using
the CamCASP program, and the fits to individual site–site potentials Vsr[ab] were performed using
the Orient program. The weighting schemes used in these fits are described in §4. The relaxation
step was also performed using the Orient program but this time using the Boltzmann weighting
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N: 11c,20,22c C1: 11c,11s,20,22c C2: 11c,11s,20,22c C3: 11c,20,22c

H1: 11c,11s H2: 11c,11s H3: 11c

Figure 8: Along-the-bond views of the ISA-based ‘atoms’ in pyridine. Here we illustrate the
anisotropy of the atom shapes by contours showing the intersections with spherical surfaces cen-
tred at the atomic nuclei. The dominant anisotropy terms for each atom are listed for local axis
frameworks with the x axis pointing out of the bond (out of the page) and the z axis normal to the
plane of the molecule.

function as described in §4. The scatter plots of these models at various stages in the fitting process
are shown in Figure 9. Weighted r.m.s. errors at the final stage are 1.03, 0.90, and 0.61 kJ mol−1

for models 1, 2 and 3, respectively. These uncertainties are less than our target of 1 kJ mol−1 for all
three models, but the performance of srModel(3) is quite remarkable, with errors less than or close
to 1 kJ mol−1 for energies as large as 100 kJ mol−1.

9.3 Infinite-order charge transfer (delocalisation) energy
The infinite-order charge-transfer energy is the dominant short-range contribution at second and
higher orders in the intermolecular interaction operator. While we can use regularised SAPT(DFT)42,75

to determine the second-order charge-transfer energy, the contributions from higher orders cannot,
at present, be computed within the SAPT framework. Unfortunately, where charge-transfer is im-
portant, these higher-order effects appear to be too large to be ignored, so we need to account for
them, if only approximately. As it turns out, the discussion of the infinite-order polarization in §5.2
readily suggests an approximation. If we argue that the infinite-order induction energy is the sum
of just the infinite-order charge-transfer and polarization terms (i.e., assuming that there are no
cross terms present), then if we know any two, we can compute the third. Here we approximate the
infinite-order induction energy as:

E(2−∞)
IND ≈ E(2)

IND + δHF
int (31)

30



0 20 40 60 80 100 120 140

E
(1)
exch + E

(1)
pen[ISA] / kJ mol−1

0

20

40

60

80

100

120

140

V
(1

)
sr

[M
od

el
]

/
kJ

m
ol
−

1

Density-Overlap Model

srModel(1) No Relax

srModel(1) Relaxed

0 20 40 60 80 100 120 140

E
(1)
exch + E

(1)
pen[ISA] / kJ mol−1

0

20

40

60

80

100

120

140

V
(1

)
sr

[M
od

el
]

/
kJ

m
ol
−

1

Density-Overlap Model

srModel(3) No Relax

srModel(3) Relaxed

Figure 9: Performance of two of the short-range models fitted to E(1)
sr . srModel(1) is fully isotropic

and srModel(3) contains the anisotropy terms described in the text and indicated in Figure 8. sr-
Model(2) results are only slightly better than those from srModel(1) and are not shown. The black
circles are results directly from the distributed density-overlap model; the green plus signs are data
obtained from the model fitted to eq. (5) before relaxation, and the red plus signs are the same after
relaxation to E(1)

sr . The blue bar represents the ±1 kJ mol−1 range.

and define the two-body infinite-order charge-transfer energy to be

E(2−∞)
CT = E(2−∞)

IND − E(2−∞)
POL

≈ E(2)
IND + δHF

int − V (2−∞)
pol [DM]. (32)

While this expression is readily implemented, it has a drawback in that the definition depends on
the type of polarization model used.

In Figure 10 we have plotted the infinite-order charge-transfer energy calculated using eq. (32)
against the first-order short-range energy E(1)

sr . First of all, at about 20% of E(1)
sr , E(2−∞)

CT is a sig-
nificant contribution to the short-range energy and it cannot be ignored. Second, while these two
energies are roughly proportional, there is a significant scatter, particularly at the larger charge-
transfer energies. Nevertheless, the scatter is rarely more than ±1 kJ mol−1. If we argue that the
charge-transfer contribution to the intermolecular interaction energy arises from a tunneling pro-
cess,42 then it is natural to assume that the tunneling probability will be roughly proportional to
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Figure 10: The infinite-order charge delocalisation (charge-transfer) energy plotted against the
first-order short-range energy E(1)

sr . The thin blue lines represent the ±1 kJ mol−1 limits.

the electron density overlap, but further work needs to be done to see whether this holds for other
systems.

We may include E(2−∞)
CT into our models for the short-range energy by constrained relaxation

of the parameters in the models already obtained for E(1)
sr , or we may exploit the approximate

proportionality of E(1)
sr and E(2−∞)

CT and absorb the bulk of the charge-transfer effects by scaling as
follows. If we assume a proportionality with constant k < 0:

E(2−∞)
CT ≈ kE(1)

sr ≈ kV (1)
sr , (33)

then we can include E(2−∞)
CT into the short-range energy model by scaling it by (1 − k) yielding

V (1−∞)
sr ≈ (1 − k)V (1)

sr

≈ (1 − k)
∑
a,b

G exp [−αab(rab − ρab(Ωab))], (34)

then, re-writing 1 − k = exp [−αabδab], where δab = − ln(1 − k)/αab, we get

V (1−∞)
sr =

∑
a,b

G exp [−αab(rab − (ρab(Ωab) − δab))]. (35)

That is, the isotropic atom-pair radii are reduced by δab by the attractive effects of the charge
delocalisation process. The atom-pair shape-function ρab(Ωab) remains additive in the sense of
eq. (28), but there is an isotropic non-additive correction δab, as shown in eq. (29).

For the pyridine dimer we get k ≈ 0.16 (it varies slightly with the type of polarization model
used). Therefore the pair-radius reduction is of the order 0.05 Bohr, which is small but not negli-
gible as it leads to an overall reduction in the intermolecular separation of a few tenths of a Bohr
in some dimer orientations. These effects may be expected to be larger in more strongly hydrogen-
bonded systems where the charge-delocalisation is stronger.

The above scaling absorbs the bulk of the charge-transfer energy into our short-range energy
models. The remainder may be included in a subsequent relaxation step, but we find that this is not
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necessary as it is usually small, and in any case, this and all other errors against the SAPT(DFT)
reference energies will be accounted for in the final relaxation stage that we describe next.

10 Total energy fits: combining the terms
The analytic fits to the various components of the total interaction energy model may be combined
as appropriate, and optionally relaxed, using constraints, to the total SAPT(DFT) interaction en-
ergies calculated for a suitable set of dimer geometries. These models have been obtained with a
significant amount of data derived directly from the density and transition densities using various
partitioning methods. The limited amount of fitting has been largely restricted to the short-range
energy model, and even here, our approach ensures that the parameters are well-defined and physi-
cally meaningful, with little of the uncertainty usually associated with fits to sums of exponentials.
Further, the target residual error for each of the models has been 0.5 to 1 kJ mol−1, and we have
largely succeeded in achieving this target. Consequently, as we shall see, these models may be
combined without further relaxation to produce reasonably accurate models for the total interac-
tion energy.

In this paper, we have reported the following models:

• Short-range: Three models have been obtained. srModel(1) is fully isotropic; srModel(2)
contains a 22c anisotropy term on the nitrogen atoms; and srModel(3) contains all the dom-
inant anisotropy terms needed. These short-range energy models include the first-order ex-
change, the electrostatic penetration, and infinite-order charge-transfer energies.

• Electrostatic: A rank 4 ISA-based distributed multipole model.

• Polarization: Three distributed polarization models obtained from the WSM procedure. The
L1(iso) and L1 models include rank 1 polarizabilities, with the former being isotropic, and
the L2 model includes terms to rank 2 on the heavy atoms. All these models are damped.
The many-body contributions are obtained through the polarization models. We will consider
only the L1 model in this paper.

• Dispersion: Two damped isotropic dispersion models have been obtained. The C6(iso) model
contains only (scaled) isotropic C6 coefficients for all pairs of atoms. And the C12(iso) model
consists of isotropic terms to C12 between pairs of heavy atoms, isotropic terms to C10 be-
tween any hydrogen atom and a heavy atom, and only isotropic C6 terms between pairs of
hydrogen atoms. As the C12 terms in the C12(iso) are found to have a minimal effect on
the quality of the model, we will instead use the equivalent C10(iso) in the remainder of
this work. All models are damped. At present we do not include any three-body dispersion
non-additivity.

This gives us 18 possible ways of combining these models into total interaction energy potentials.
Of these, we explore three combinations in this paper:

• Model(1): Isotropic short-range model, with rank 4 ISA-DMA, L1 polarizability model, and
C10(iso) dispersion model.
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• Model(2): Short-range model containing isotropic terms on all atoms and an additional 22c
term on the nitrogen atoms, with rank 4 ISA-DMA, L1 polarizability model, and C10(iso)
dispersion model.

• Model(3): Anisotropic short-range model, combined with rank 4 ISA-DMA, L1 polarizabil-
ity model, and C10(iso) dispersion model.

These models differ only in their description of the short-range repulsion.
In Table 1 we report r.m.s. errors made by these models before relaxation against the SAPT(DFT)

interaction energies. The r.m.s. errors are remarkably small at this stage, with models (1) and (3)
exhibiting errors less than 1 kJ mol−1 for the most energetically important dimers. Surprisingly,
Model(2) fares slightly worse than the simpler Model(1) with r.m.s. errors of 1.5 kJ mol−1 in this
energy range. All models fare reasonably well for the positive energy dimers, with r.m.s. errors
between 1.8 to 2.9 kJ mol−1.

The models may be improved by constrained relaxation to SAPT(DFT) total interaction ener-
gies. We initially relaxed the models against energies from the random dimers in Dataset(1), but
this led to a reduction in the quality of the fits for the test set of low-energy dimers. It appears that
while the random dimers are suitable for an unbiased parametrization of the individual compo-
nents of the model, they are not suitable for relaxing the sum of these components. The principal
reason for this seems to be that the random dimer set does not contain low-energy dimers, as
can be seen in Figure 11. Consequently, relaxing to this set causes the models to represent these
relatively high-energy dimers better at the cost of the more physically important low-energy con-
figurations. Because of this, we have performed the relaxation of the models using both Dataset(1)
and Dataset(2).

The constrained relaxation was performed using the Orient program with the weighting scheme
described in §4. Constraints were imposed using eq. (12) with tight constraint strength parameters
ci chosen to be 1.0 for the isotropic parameters and the C8 and C10 parameters. The C6 terms were
kept unaltered so as to preserve the long-range dispersion interaction. The anisotropy parameters
were not allowed to vary. Rather than relax all parameters simultaneously, the relaxation was per-
formed in stages, with parameters associated with particular sites allowed to vary in each stage.
This procedure, though computationally efficient, needed to be iterated to ensure that the relaxation
was adequate.

In Table 1 we also report r.m.s. errors made by the relaxed models. After relaxation, all three
models show r.m.s. errors of only 0.5 to 0.6 kJ mol−1 for the most strongly bound dimers, and
somewhat larger errors for the higher energy dimers. Perhaps unsurprisingly, Model(3) fares best,
with r.m.s. errors less than 1 kJ mol−1 for all dimers with energies less than or equal to 20 kJ mol−1.

In Figure 11 we display scatter plots of the interaction energies calculated with Model(3)
against SAPT(DFT) energies both before and after relaxation. The excellent performance of the
unrelaxed Model(3) is evident. At no stage in the development of Model(3) were the total inter-
action energies from Dataset(1) included; rather we only used the charge-transfer energies in the
development of this model. Additionally, none of the low-energy dimers in Dataset(2) were used
in any way in the construction of Model(3), yet these energies are accurately predicted by the un-
relaxed Model(3), with very few outliers. This model may be improved by relaxing it to the dimer
energies in both data sets. This relaxation was performed with the anisotropic terms in the potential
frozen and only the isotropic parameters, including the low-ranking dispersion coefficient, allowed
to vary with tight anchors imposed (see the SI for additional information). As seen in Figure 11,
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this relaxed model exhibits an excellent correlation with the SAPT(DFT) reference energies, and
has fewer low energy outliers compared with the unrelaxed model. In the remainder of this paper
by ‘Model(3)’ we will refer to this relaxed model.

Similar figures for Model(1) and Model(2) can be found in the SI. As may be expected from
the r.m.s. errors reported in Table 1, the performance of the unrelaxed Model(1) is excellent given
the simplicity of the model, but the unrelaxed Model(2) shows somewhat larger errors for the most
strongly bound dimers. However, both of these models improve considerably on relaxation.

The quality of the relaxed potentials can be assessed using Dataset(3) which was not used
at any point in the model development process. In Table 1 we report r.m.s. errors made by the
models (before and after relaxation) against Dataset(3). We see that the errors made are largely
in accordance with those made against Dataset(1) and Dataset(2), indicating that the models are
predictive. In particular, the good performance of the un-relaxed models, particularly for the un-
relaxed Model(3), suggests that the algorithm we have described is indeed robust. The comparison
with Dataset(3) indicates that the relaxed models show somewhat larger inaccuracies in the repul-
sive configurations, particularly when compared to the coresponding un-relaxed models. However,
these errors are not very large, and may be an acceptable price to pay for the increased accuracy in
the low-energy dimer configurations.

In Table 1 we also report r.m.s. errors for a model functionally identical to Model(3), but created
using the DF-AIM approach and with DMA4 multipoles. Apart from these two differences, this
model, termed Model(3)-DF-DMA4, has been created in an identical manner to the others reported
in this paper. This is the kind of model that might have been created using the approach we have
described in an earlier paper on atom–atom potentials.40 We see that across the −20 : 20 kJ mol−1

energy range the r.m.s. errors made by this model are twice as large as those from Model(3). This
is mainly a consequence of the unphysical AIM atoms that result from the DF-AIM approach that
are shown in Figure 6. This approach results in the wrong atomic anisotropies that the fit cannot
correct with the limited amount of SAPT(DFT) data in Datasets (1) and (2). This is an inevitable
consequence of the Bayes-like approach we have adopted: the role of the first step in the fitting
process — the first-order fits through the distributed density overlap model — is to determine prior
values for the fitting parameters (see §3). The subsequent relaxation steps merely refine these prior
values. However, if the prior values are very poor, as they are with the DF-AIM approach, then we
require a considerable amount of data to move them to the correct values. This is not needed with
the ISA-based AIM approach, and demonstrates the superiority of this method.

11 Results

11.1 Minima
We have used the basin-hopping algorithm (see Ref. 97 for a review) as implemented in the Orient
program to search for stable dimers on the potential energy surfaces. In contrast to the rather simple
PES of the benzene dimer30,32 which supports only three minima, we have found eight minima for
the pyridine dimer. The minimum-energy structures, which are illustrated in Figure 13, may be
classified according to their bonding:

• Hydrogen-bonded: These include Hb1, Hb2 and Hb3. Of these, Hb1 is doubly hydrogen-
bonded and has been found in a DFT-D (BLYP+Grimme D1 correction) search98 and has
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Table 1: R.m.s. errors (kJ mol−1) for the total interaction energy models for the pyridine dimer.
Errors are calculated against SAPT(DFT) total interaction energies, and are reported both for the
models relaxed to the set of SAPT(DFT) energies in Dataset(1) and Dataset(2), and for the models
obtained by combining the different terms in the potential as described in the text. Additionally we
report r.m.s. errors agains Dataset(3) which was not used at any stage in the potential development
process. The errors for these unrelaxed models are reported in parantheses. Model(3)-DF-DMA
denotes a model functionally similar to Model(3) but created using the DF-AIM approach with
multipoles from the DMA4 model.

Energy range Model(1) Model(2) Model(3) Model(3)-DF-DMA4

R.m.s. errors against Dataset(1) and Dataset(2):
E ≤ −10 0.59 (1.26) 0.59 (1.22) 0.53 (1.08) 0.97 (1.85)

−10 < E ≤ 0 0.80 (0.99) 0.72 (0.95) 0.56 (0.70) 1.21 (1.39)
0 < E ≤ 20 1.69 (2.71) 1.19 (2.58) 0.95 (1.53) 2.17 (3.16)

R.m.s. errors against Dataset(3):
E ≤ −10 0.75 (0.66) 0.57 (0.51) 0.33 (0.45) 1.22 (1.53)

−10 < E ≤ 0 0.65 (0.69) 0.61 (0.65) 0.37 (0.42) 0.87 (0.93)
0 < E ≤ 20 1.89 (1.58) 1.76 (1.54) 1.66 (1.23) 2.81 (2.59)

also been investigated at the CCSD(T)/CBS level of theory99 to be around −15.5 kJ mol−1

(estimated from Figure 5 in Ref. 99). This compares well with our SAPT(DFT) energy of
−16.6 kJ mol−1. The Hb2 and Hb3 structures do not appear to have been reported in prior
literature.

• Stacked: The S1 and S2 minima are the stacked dimers which are largely dispersion-bound.
Both these structures have been found in the DFT-D search, however we see no evidence of
the two other stacked structures reported in that study.

• T-shaped: None of these minimum energy dimers are exactly T-shaped, but the T1 and T2
minima are nearly so, and the bT minimum is a very bent-T-shaped structure. The bT struc-
ture is similar to one of the T-shaped structures found in the DFT+D search. We do not find
the ‘T-shaped 1’ structure in the DFT+D search by Piacenza and Grimme.98

The minimum configurations are displayed in Figure 13 and their energies are reported in Table 2
and Figure 14. For comparison, we have calculated SAPT(DFT) interaction energies for the dimer
configurations obtained from the relaxed Model(3) PES. Not all of the models support all the
minima. Model(2) does not support the Hb3 minimum, which instead relaxes to the T1 structure
on this model PES. The relaxed Model(3)-DF-DMA4 supports only five of the eight minima, and
two of those (S2 and T1) differ in structure from the corresponding structures on the ISA-based
surfaces: in the S2 structure on this surface the molecules are not parallel, and the T1 is bent. The
three missing structures relax to either the Hb2 or the T1 structures. The Hb2 minimum is the
global energy minimum on this PES.
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Figure 11: The total interaction energy models for Model(3). The upper panel shows energies
from Model(3) before relaxation to the dimers in Dataset(1) and Dataset(2), and the lower panel
shows model energies after relaxation. In both cases these energies are plotted against the total
SAPT(DFT) interaction energy E(1−∞)

int . The blue bar represents the ±1 kJ mol−1 deviation from
SAPT(DFT).

For Model(3) we have reported energies for the minima on both the unrelaxed and relaxed
models. These largest energy differences in the minima on these two PESs differ by just over 1.1
kJ mol−1 (just over 7% of the interaction energy). This is a remarkable result as it indicates that the
unrelaxed models can be predictive without the need for fitting to the SAPT(DFT) total interaction
energies, in particular, no information about total interaction energies of the stable, low-energy
dimers was used in creating the three unrelaxed models. Further, the similarity of the relaxed and
unrelaxed models suggests that the procedure used here appears to be free of artifacts usually
introduced by fitting procedures, and is robust to the inclusion of additional data. However this
data needs to be biased to low energy dimers, as has been noted above. We will explore this issue
in a forthcoming paper.52

The agreement between the ISA-based models (relaxed and unrelaxed) is made even clearer
in Figure 12 where we display PES sections at representative minima. The agreement between
SAPT(DFT) and all models — including the unrelaxed Model(3) — for the minima is generally
very good, both in the overall shape of the PESs and the location and depth of the radial minimum.
Plots for the remainder of the minima can be found in the SI.
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Figure 12: PES sections at the Hb1, S1 and T1 dimer orientations. Sections at the other minima are
provided in the supplementary information.
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In Table 3 we report the lowest harmonic vibrational frequencies at these minima. These fre-
quencies give us an indication of how different the shapes of the three PESs are at the stable minima
configurations. There is generally a good agreement between the minima on all ISA-based mod-
els, but the frequencies seem to vary more with the models than the corresponding energies. This
may reflect the importance of the anisotropy in determining the shape of the PES. This agreement,
though imperfect, is reassuring as it gives us some confidence that the minima we observe are real
and not artifacts of the fitting function used. The largest differences are between the ISA-based
models and the DF-based Model(3)-DF-DMA4. The lowest vibrational frequencies of the Hb1
and S1 minima are only half as large as the corresponding frequencies for Model(3), indicating
that the shape of the PES of Model(3)-DF-DMA4 differs from that of Model(3) in the regions of
these minima. This should not be a surprise given the rather significant differences in the AIM
shapes from the ISA- and DF-based density partitioning schemes as shown in Figures 6 and 7.

(1) Hb1 (2) S1 (3) S2 (4) T1

(5) T2 (6) Hb2 (7) bT (8) Hb3

Figure 13: Structures of pyridine dimers at stable minima on the three PESs. The structures are or-
dered according to their energies calculated using SAPT(DFT). These images have been produced
using the Jmol program.100

11.2 Second virial coefficients
The second pressure virial coefficient B(T ) represents a necessary, but not sufficient, test of the
quality of the two-body PES. As the virial coefficients average over the PES, it is possible to
construct an infinity of PESs that yield the correct values of B(T ) in a finite temperature range.
Nevertheless, it is important that any model PES reproduces the experimental values as a mini-
mum requirement. In Figure 15 we display second virial coefficients calculated for the pyridine
dimer. We have calculated B(T ) at a range of temperatures using the Orient program. Only the
Classical results are presented as the quantum corrections were found to be insignificant over the
range of temperatures reported here. We used a stochastic integration sampling algorithm with 102
radial steps and 262,144 dimer orientations in order to integrate B(T ) sufficiently accurately. From
Figure 15 we see that all three models show good agreement with the experimental data of Andon
et al.101 and Cox & Andon.102 As the models all slightly overestimate B(T ) across the temperature
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Table 2: Interaction energies (kJ mol−1) of the pyridine dimers at the energy minima reported in
Figure 13. The SAPT(DFT) reference energies have been calculated at the dimer geometries ob-
tained on the relaxed Model(3) PES. The energies reported for all models are for the stationary
points on the model PES, therefore the dimer geometries at which the energies are evaluated will
depend on the model and will differ from the geometries used to obtain the SAPT(DFT) reference
energies. Where a structure is not supported as a minimum we report in parentheses the structure
it relaxes into. Thus Model(2) does not support the Hb3 structure which instead relaxes to the T1
minimum on this PES. Structures on the Model(3)-DF-DMA4 surfaces that are only approximately
the same as those on the other surfaces are indicated by an asterisk.

Minimum SAPT(DFT) Model(1) Model(2) Model(3) Model(3)-DF-DMA4
Relaxed Relaxed No Relax Relaxed No Relax Relaxed

Hb1 −16.67 −16.11 −16.00 −17.28 −16.37 −14.38 −15.04
S1 −16.22 −15.64 −15.55 −14.54 −15.61 −13.60∗ −15.46
S2 −15.45 −15.38 −15.38 −14.17 −15.35 −12.71∗ −14.42∗

T1 −14.57 −14.54 −14.73 −14.65 −15.02 −14.63 −14.84∗

T2 −14.70 −14.54 −14.69 −14.68 −14.92 (Hb2) (Hb2)
Hb2 −14.70 −15.03 −14.65 −14.57 −14.76 −15.19 −15.61
bT −14.01 −14.00 −14.12 −13.97 −14.25 (Hb2) (Hb2)

Hb3 −13.84 −14.60 (T1) −13.88 −14.08 −14.00 (T1∗)

Hb1 S1 S2 T1 T2 Hb2 bT Hb3
Minimum
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Figure 14: Visualisation of the data in Table 2. The energies of stable dimers on the three PESs are
displayed as solid horizontal bars. The dashed lines link the energies levels associated with each
of the three models. SAPT(DFT) reference energies have been calculated at the dimer geometries
from Model(3). Data for Model(3)-DF-DMA4 are not shown here.
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Table 3: Lowest harmonic vibrational frequencies for the minima on the relaxed model PESs. For
Model(3) we also include data for the unrelaxed version of this model. Model(2) does not support
the Hb3 minimum. All frequencies are reported in cm−1.

Minimum Model(1) Model(2) Model(3) Model(3)-DF-DMA4
Relaxed Relaxed No Relax Relaxed No Relax Relaxed

Hb1 15.96 12.76 15.79 15.08 7.01 7.70
S1 6.04 3.83 4.79 6.69 1.94 3.42
S2 9.99 10.53 8.98 11.24 9.60 11.81
T1 3.74 4.45 9.57 6.62 5.37 8.22
T2 1.94 3.89 7.38 6.07 — —

Hb2 12.05 9.94 12.15 12.19 11.92 10.91
bT 5.55 7.43 3.13 6.28 — —

Hb3 12.07 — 11.36 10.88 6.88 —

range of the figure, they may, on the whole, be somewhat too attractive. We will return to this issue
later in this paper.
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Figure 15: Classical second virial coefficients for pyridine. The experimental data and error bars
are from Andon et al.101 and Cox & Andon.102 Quantum corrections contribute very little and
would not make a visible difference on the scale of this graph.

12 Analysis & Discussion

12.1 Polarization damping revisited
In developing the damping model for our polarizability models in §5.2 we recognised an uncer-
tainty in our choice for damping model. This arose because the damping parameter βpol depends
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on the choice of dimer configurations used to determine it. Here we re-examine this issue by as-
sessing the damping models against data obtained at the eight minimum energy dimer orientations
at various separations. In Figure 16 we compare the second-order polarization energies from the
polarization models described in §5.2 with second-order polarization energies from regularised
SAPT(DFT), E(2)

POL, It should be apparent that while our choices for the damping models are rea-
sonable, with errors typically less than 1 kJ mol−1 for the attractive dimers, there is a systematic
over-damping, with the polarization energies of some (repulsive energy) dimers underestimated by
as much as 2.5 kJ mol−1. This problem can be largely remedied by increasing the value of βpol. In
the same figure we also display polarization energies calculated with the anisotropic L2 polariza-
tion model with βpol = 1.0 a.u. This small increase causes a significant improvement to the match
between the model and E(2)

POL.
In this manner, we are able to determine a new set of models with the appropriate polarization

damping chosen self-consistently. As we emphasised in §5.2, the choice of βpol does not affect
the quality of the two-body potential. Indeed, Model(3) with this change to the damping is nearly
identical in every respect to the original model. The effects will however be manifest in the many-
body polarization energies. We are currently investigating this issue.
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Figure 16: Second-order polarization energies from regularised SAPT(DFT) compared with the L1
polarization model. The energies have been calculated using minimum energy dimer configurations
obtained on the Model(3) PES. Dimers with attractive total interaction energies are indicated with
filled symbols, and those with repulsive energies with open symbols. The thin blue lines indicate
the ±1 kJ mol−1 error limits and the blue bar is present just as a visual aid.

12.2 Multipole model rank reduction
Our simplest model, Model(1), contains anisotropic terms only in the ISA-DMA multipole and the
polarization models. In §5.1 we have argued that the ISA-DMA model shows better convergence
properties than the usual DMA procedure of Stone.103 Based on that discussion and the results
presented in Figure 1, we may ask whether we can truncate the rank of the ISA-DMA model, while
keeping the other parameters fixed, without incurring a significant loss in accuracy. In Figure 17 we
display interaction energy profiles for Model(1) using the ISA-DMA model at various ranks. As
before, these calculations have been performed at two representative dimer orientations: Hb1 and
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S1. At the doubly hydrogen-bonded Hb1 orientation there is no appreciable change on reducing
rank to l = 3, but any further reduction results in a significant change in the PES with the interaction
energy getting systematically smaller (in magnitude). At the dispersion-bound S1 orientation there
is almost no change to the model when the rank of the multipole expansion is reduced all the way
to l = 0 (charges only). This is perhaps to be expected as the electrostatic interaction is relatively
insignificant for the S1 (and S2) complexes. What is surprising is that the T1 complex also shows
a relative insensitivity to the rank of the multipole expansion.
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Figure 17: The effect of rank reduction of the multipole model for Model(1).

The behaviour of the models at the doubly-hydrogen-bonded Hb1 dimer configuration needs
some explanation. The rank of multipoles on the hydrogen atoms do not appear to matter as the
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model interaction energies do not alter significantly if only rank 0 (charge) terms are included
on these atoms. However, the nitrogen and carbon atoms appear to need the octopolar terms to
model the electrostatic interaction correctly in this configuration. At least for the nitrogen atom
this should not be surprising as the octopolar terms are needed to describe the effects from the
lone pairs, but it is surprising that the carbon atoms also require these terms. In any case, it may
be possible to improve the quality of the charge-only model by including additional sites around
the nitrogen and carbon atoms to account for these terms in much the same way as is done for the
oxygen atom in water models. If successful, this would provide us with a route to construct a fully
isotropic interaction model for pyridine and other systems. This would be important as, with some
exceptions such as the Orient and DMACRYS104 programs, simulation programs cannot normally
use potentials with anisotropic terms, a restriction that significantly limits the usage of the accurate
potentials we are able to develop.

13 Conclusions & Directions
We have described a robust and relatively easy to implement algorithm for developing accurate
intermolecular potentials in which most of the potential parameters are derived from the charge
density and density response functions, and the remaining, short-range, parameters are robustly
determined by associating these with specific atom-pairs using a basis-space implementation of the
iterative stockholder atoms (ISA) algorithm. With this algorithm, accurate, many-body potentials
can be derived using a relatively small number of dimer energies calculated using SAPT(DFT).
This significantly reduces the computational cost of the approach. Importantly, as all of the long-
range and most of the short-range parameters are derived, the predictive power of the resulting
potentials is significant.

One of the major obstacles to intermolecular potential development has been the derivation of
the short-range parameters. We have demonstrated that these can be relatively easily and robustly
derived from the non-interacting charge densities using the distributed density-overlap model based
the ISA. In this manner, even the atomic anisotropy terms, which are usually poorly defined in a
direct fit, are robustly determined with a relatively small amount of computational effort. Using
these techniques on the pyridine dimer, we have demonstrated that features such as the density
distortions due to the π-bonding on the carbon atoms, and the lone pair on the nitrogen atom in
pyridine are well-defined using our approach. Indeed, only terms with a physical origin are present
in this approach.

The main features of the methodology we describe in the paper are:

• Efficient use of data: The potentials are derived using a hierarchy of data sets; the more
extensive data sets include only first-order energies and can be very easily calculated, while
the second-order energies are included through a significantly smaller data set.

• Priors: We use the first and most extensive data set to determine prior values for most of
the short-range parameters. These priors may subsequently be modified using the second,
smaller data set. These steps may be repeated thus leading to a multi-stage procedure which
significantly reduces the amount of data needed to tune the potential.

• ISA: The short-range parameters are determined using the ISA method for partitioning the
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molecular densities into atomic contributions. The BS-ISA algorithm allows this to be per-
formed using extensive basis sets with a well-defined basis set limit. The ISA atoms are as
close to spherical as is possible and account for charge movement within the molecule, con-
sequently the resulting short-range repulsion parameters may be expected to be free from
basis set artifacts, and be the most isotropic possible. This compares favourably with the
density-fitting-based partitioning scheme we have proposed in earlier papers31,40 which does
not fulfil either of these properties. Indeed the r.m.s. errors made by the ISA-based models
are half as much as those from the density-fitting-based models.

• Long-range models: The long-range parameters of the potentials are determined using dis-
tributed multipoles, polarizabilities and dispersion coefficients. The ISA-DMA multipoles
are obtained from the BS-ISA approach and have been demonstrated to exhibit systematic
convergence with rank. The WSM distribution scheme has been used to calculate the dis-
tributed polarizabilities and dispersion coefficients, the latter of which we have tuned to
SAPT(DFT) dispersion energies.

• Predictive power: Most of the parameters are derived from or fitted to molecular properties,
consequently they are physically meaningful and the resulting potentials exhibit a consider-
able predictive power.

• Hierarchy of models: The methods we have described allow us to determine potentials of
various levels of complexity in a meaningful manner. These may be fully isotropic at the
atom–atom level or contain as much anisotropy as is needed.

We have used these techniques to develop a set of potentials of varying levels of detail for
the pyridine dimer. The simplest of these include only isotropic short-range terms, and the most
detailed includes all significant anisotropy terms up to rank two. The predictive power of these
potentials is quite significant and all are able to predict SAPT(DFT) interaction energies for low
energy dimers not included in the fit. As a consequence, the potentials are robust to the inclusion
of additional data: parameters alter very little on relaxation, and features on the potential energy
landscape change only slightly. This robustness is particularly important in the development of
multidimensional potentials, as we will generally be unable to sample dimer configuration space
adequately, especially for larger monomers.

We have compared our newly derived pyridine potentials to the rather limited set of data avail-
able in the literature. Of the eight stable minima found on the Model(3) PES, the double hydrogen-
bonded Hb1 dimer has been found in previous DFT+D work by Piacenza and Grimme,98 and the
CCSD(T) energy for this structure99 differs from our SAPT(DFT) interaction energy by only 7%.
The two other hydrogen-bonded structures, Hb2 and Hb3, have not been seen before. Both the
stacked structures, S1 and S2, have been found earlier.98 Of the three T-shaped structures, only
the bT structure resembles a previously found structure,98 while the T1 and T2 structures appear
to be unique to the models developed in this paper. As the DFT+D method cannot be relied on to
correctly describe the subtle balance of dispersion, electrostatic, polarization and charge-transfer
interactions seen in the eight dimers of pyridine, it is possible that the set of eight minima we have
found are a more accurate representation of this system. Further tests are needed at the CCSD(T)
level of theory if we are to be sure of this.
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In this paper we have provided solutions to some of the most significant issues related to po-
tential development, and, as a consequence, have inevitably exposed other minor issues that need
resolving. Some of these are:

• The WSM method for deriving distributed polarization and dispersion models is a good one,
but it is based on a less than ideal partitioning method48 that seems to result in some artifacts
in the models and a small, but undesirable basis-set dependence.

• The current damping of the dispersion model based on molecular ionisation potentials only
is less than ideal and there is good reason to expect a site–site damping model to perform
better.

• More needs to be done to understand the origin of the polarization damping. Like the dis-
persion damping, here too it is clear that the damping model needs to depend on the pair of
interacting sites, but there is evidence42 that the polarization damping differs strongly from
that used for the dispersion. This is probably the least understood issue at present.

• The resulting potentials are for rigid monomers only. However, as the potential parameters
are closely associated with the properties of the atoms in the interacting molecules through
either the ISA or the DF-based partitioning methods, it is possible that these models may be
applicable to flexible monomers. This conjecture needs to be tested.

• One of the most serious limitations of the approach we have described here is that there are
very few simulation programs capable of using these potentials. Most simulation programs
use the simpler Lennard-Jones models with point-charge electrostatic models. However, dis-
tributed multipoles are being increasingly available in simulations codes: both OpenMM105

and DL_POLY106 allow the use of distribute multipoles and simple polarization models, but
only the Orient107 and DMACRYS104 programs currently support the use of the anisotropy
terms present in our more complex potentials. We do not doubt that this situation will change
as potential development using the methods described in this paper becomes more stream-
lined and easy to use, and as we accumulate evidence that these more elaborate potentials do
result in higher predictive accuracy.

It should be apparent that the ISA — in particular, the BS-ISA algorithm — plays a central
role in the methodology we have described. Consequently it should come as no surprise that some
of the issues listed above may be resolved using data extracted from the ISA atomic densities. In
a forthcoming paper52 we will describe how the dispersion damping issue may be resolved using
the ISA, and also how even more of the short-range parameters may be derived rather than fitted.

However, there are issues with the models we have presented here. Second virial coefficients
are well reproduced using our isotropic and anisotropic potentials, though all three models give
B(T ) somewhat too negative. This indicates that the models are somewhat too attractive on the av-
erage. We have established that there are indeed regions of configuration space where all potentials
systematically overbind and these are associated with stacked-like configurations. While we do
not fully understand the origin of the problem, it is possible that the additivity assumption we have
made in the definition of ρab in eq. (28) is inappropriate, and also that the SAPT(DFT) interaction
energies are themselves too attractive for these configurations due to the known problems with
the δHF

int term for dispersion-bound systems.108,109 We are actively engaged in understanding these
issues.
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Appendices

A Programs
Many of the theoretical methods described in this paper are implemented in programs available for
download. Some of these, together with their main uses in the present work, are:

• CamCASP 5.9:36 Calculation of WSM polarizabilities, the dispersion models, the SAPT(DFT)
energies, and overlap models.

• Orient 4.8:107 Localization of the distributed polarizabilities, calculation of dimer energies
using the electrostatic, polarization and dispersion models, visualization of the energy maps,
and fitting to obtain the analytic atom–atom potentials.

• Dalton 2.0:63 DFT calculations. A patch64 is needed to enable Dalton 2.0 to work with
CamCASP.

B CamCASP

Many of the algorithmic details of the electronic structure methods implemented in the CamCASP
suite of programs have been described in previous publications. Rather than provide an exhaustive
list, we will indicate those algorithms and methods of importance for potential development, as
well as some numerical techniques that are particularly important for accuracy and computational
efficiency.

Some of the capabilities of the CamCASP suite of programs are as follows:

• SAPT(DFT): Interaction energies to second-order can be calculated using SAPT(DFT).7–10

Infinite-order effects may be approximated using the δHF
int correction.
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• Distributed multipole models: These may be evaluated using both the GDMA algorithms,44,45

or directly from a density-fitting-based partitioning using a variety of constraints (see the
CamCASP User’s Guide for details), or from the recently implemented ISA algorithm.47

• Distributed frequency-dependent polarizabilities: These may be calculated in non-local form
using constrained density-fitting-based partitioning schemes,48 which include the SRLO
method80 as a special case. Localised models may be obtained using the Williams–Stone–
Misquitta (WSM) model.43,49

• Distributed dispersion models: These may be evaluated directly using the non-local frequency-
dependent models,77 or from localised polarizability models obtained using the WSM pro-
cedure.50 Models may be isotropic or anisotropic.

• Linear-response kernel: The code is able to evaluate the linear-response kernel using the
ALDA, CHF and hybrid, ALDA+CHF, kernels. These integrals are evaluated internally.

• Interfaces: CamCASP can use molecular orbitals calculated from the Dalton program (ver-
sions from 2006 to 2015 are supported), the NWChem 6.x program and GAMESS(US) .

These are the major features of the CamCASP program, and the code additionally includes other
algorithms that are important for model development. These include the ability to calculate dis-
tributed density-overlap integrals and, from these, develop density overlap models for the short-
range intermolecular interaction energy, and interfaces to the Orient program107 to aid in visuali-
sation of the interaction energy models and fitting of intermolecular potentials.
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