19 research outputs found

    Influence of long-range dipolar interactions on the phase stability and hysteresis shapes of ferroelectric and antiferroelectric multilayers

    Get PDF
    Phase transition and field driven hysteresis evolution of a two-dimensional Ising grid consisting of ferroelectric-antiferroelectric multilayers that take into account the long range dipolar interactions were simulated by a Monte-Carlo method. Simulations were carried out for a 1+1 bilayer and a 5+5 superlattice. Phase stabilities of components comprising the structures with an electrostatic-like coupling term were also studied. An electrostatic-like coupling, in the absence of an applied field, can drive the ferroelectric layers towards 180º domains with very flat domain interfaces mainly due to the competition between this term and the dipole-dipole interaction. The antiferroelectric layers do not undergo an antiferroelectric-to-ferroelectric transition under the influence of an electrostatic-like coupling between layers as the ferroelectric layer splits into periodic domains at the expense of the domain wall energy. The long-range interactions become significant near the interfaces. For high periodicity structures with several interfaces, the interlayer long-range interactions substantially impact the configuration of the ferroelectric layers while the antiferroelectric layers remain quite stable unless these layers are near the Neel temperature. In systems investigated with several interfaces, the hysteresis loops do not exhibit a clear presence of antiferroelectricity that could be expected in the presence of anti-parallel dipoles, i. e., the switching takes place abruptly. Some recent experimental observations in ferroelectric-antiferroelectric multilayers are discussed where we conclude that the different electrical properties of bilayers and superlattices are not only due to strain effects alone but also long-range interactions. The latter manifests itself particularly in superlattices where layers are periodically exposed to each other at the interfaces

    Strain on ferroelectric thin films

    Get PDF

    Misfit dislocations in nanoscale ferroelectric heterostructures

    Get PDF
    We present a quantitative study of the thickness dependence of the polarization and piezoelectric properties in epitaxial (001) PbZr0.52Ti0.48O3 films grown on (001) SrRuO3-buffered (001) SrTiO3 substrates. High-resolution transmission electron microscopy reveals that even the thinnest films (similar to 8 nm) are fully relaxed with a dislocation density close to 10(12) cm(-2) and a spacing of approximately 12 nm. Quantitative piezoelectric and ferroelectric measurements show a drastic degradation in the out-of-plane piezoelectric constant (d(33)) and the switched polarization (DP) as a function of decreasing thickness. In contrast, lattice-matched ultrathin PbZr0.2Ti0.8O3 films that have a very low dislocation density show superior ferroelectric properties. Supporting theoretical calculations show that the variations in the strain field around the core of the dislocation leads to highly localized polarization gradients and hence strong depolarizing fields, which result in suppression of ferroelectricity in the vicinity of a dislocation. (c) 2005 American Institute of Physics
    corecore