23,212 research outputs found

    Bias to CMB lensing from lensed foregrounds

    Get PDF
    Extragalactic foregrounds are known to constitute a limiting systematic in temperature-based cosmic microwave background (CMB) lensing with AdvACT, SPT-3G, Simons Observatory, and CMB S4. Furthermore, since these foregrounds are emitted at cosmological distances, they are also themselves lensed. The correlation between this foreground lensing and CMB lensing causes an additional bias in CMB lensing estimators. In this paper, we quantify for the first time this "lensed foreground bias" for the standard CMB lensing quadratic estimator, the CMB shear, and the CMB magnification estimators, in the case of Simons Observatory and in the absence of multifrequency component separation. This percent-level bias is highly significant in the cross-correlation of CMB lensing with LSST galaxies and comparable to the statistical uncertainty in the CMB lensing autospectrum. We discuss various mitigation strategies and show that "lensed foreground bias-hardening" methods can reduce this bias at some cost in signal to noise. The code used to generate our theory curves is publicly available.1https://github.com/EmmanuelSchaan/LensedForegroundBias

    Vacuum structure and effective potential at finite temperature: a variational approach

    Full text link
    We compute the effective potential for Ï•4\phi^4 theory with a squeezed coherent state type of construct for the ground state. The method essentially consists in optimising the basis at zero and finite temperatures. The gap equation becomes identical to resumming the infinite series of daisy and super daisy graphs while the effective potential includes multiloop effects and agrees with that obtained through composite operator formalism at finite temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and Part. Phys.

    Photometry of active Centaurs: Colors of dormant active Centaur nuclei

    Get PDF
    We present multiband photometric observations of nine Centaurs. Five of the targets are known active Centaurs (167P/CINEOS, 174P/Echeclus, P/2008 CL94, P/2011 S1, and C/2012 Q1), and the other four are inactive Centaurs belonging to the redder of the two known color subpopulations (83982 Crantor, 121725 Aphidas, 250112 2002 KY14, and 281371 2008 FC76). We measure the optical colors of eight targets and carry out a search for cometary activity. In addition to the four inactive Centaurs, three of the five active Centaurs showed no signs of activity at the time of observation, yielding the first published color measurements of the bare nuclei of 167P and P/2008 CL94 without possible coma contamination. Activity was detected on P/2011 S1 and C/2012 Q1, yielding relatively high estimated mass loss rates of 140±20140\pm20 and 250±40250\pm40 kg/s, respectively. The colors of the dormant nuclei are consistent with the previously-published colors, indicating that any effect of non-geometric scattering from Centaur dust or blanketing debris on the measured colors is minimal. The results of our observations are discussed in the context of the cause of Centaur activity and the color distributions of active and inactive Centaurs. We suggest that the relative paucity of red Centaurs with low-perihelion orbits may not be directly due to the blanketing of the surface by unweathered particulates, but could instead be a result of the higher levels of thermal processing on low-perihelion Centaurs in general.Comment: 13 pages, 4 figures, accepted for publication in A

    Color superconducting 2SC+s quark matter and gapless modes at finite temperatures

    Full text link
    We investigate the phase diagram of color superconducting quark matter with strange quarks (2SC+s quark matter) in beta equliibrium at zero as well as finite temperatures within a Nambu-Jona-Lasinio model. The variational method as used here allows us to investigate simultaneous formation of condensates in quark--antiquark as well as in diquark channels. Color and electric charge neutrality conditions are imposed in the calculation of the thermodynamic potential. Medium dependance of strange quark mass plays a sensitve role in maintaining charge neutrality conditions. At zero temperature the system goes from gapless phase to usual BCS phase through an intermediate normal phase as density is increased. The gapless modes show a smooth behaviour with respect to temperature vanishing above a critical temperature which is larger than the BCS transition temperature. We observe a sharp transition from gapless superconducting phase to the BCS phase as density is increased for the color neutral matter at zero temperature. As temperature is increased this however becomes a smooth transition.Comment: 18 pages, 14 figure

    Stabilizing Stochastic Predictive Control under Bernoulli Dropouts

    Full text link
    This article presents tractable and recursively feasible optimization-based controllers for stochastic linear systems with bounded controls. The stochastic noise in the plant is assumed to be additive, zero mean and fourth moment bounded, and the control values transmitted over an erasure channel. Three different transmission protocols are proposed having different requirements on the storage and computational facilities available at the actuator. We optimize a suitable stochastic cost function accounting for the effects of both the stochastic noise and the packet dropouts over affine saturated disturbance feedback policies. The proposed controllers ensure mean square boundedness of the states in closed-loop for all positive values of control bounds and any non-zero probability of successful transmission over a noisy control channel

    Output feedback stable stochastic predictive control with hard control constraints

    Full text link
    We present a stochastic predictive controller for discrete time linear time invariant systems under incomplete state information. Our approach is based on a suitable choice of control policies, stability constraints, and employment of a Kalman filter to estimate the states of the system from incomplete and corrupt observations. We demonstrate that this approach yields a computationally tractable problem that should be solved online periodically, and that the resulting closed loop system is mean-square bounded for any positive bound on the control actions. Our results allow one to tackle the largest class of linear time invariant systems known to be amenable to stochastic stabilization under bounded control actions via output feedback stochastic predictive control

    Spin-Charge Decoupling and Orthofermi Quantum Statistics

    Full text link
    Currently Gutzwiller projection technique and nested Bethe ansatz are two main methods used to handle electronic systems in the UU infinity limit. We demonstrate that these two approaches describe two distinct physical systems. In the nested Bethe ansatz solutions, there is a decoupling between the spin and charge degrees of freedom. Such a decoupling is absent in the Gutzwiller projection technique. Whereas in the Gutzwiller approach, the usual antisymmetry of space and spin coordinates is maintained, we show that the Bethe ansatz wave function is compatible with a new form of quantum statistics, viz., orthofermi statistics. In this statistics, the wave function is antisymmetric in spatial coordinates alone. This feature ultimately leads to spin-charge decoupling.Comment: 12 pages, LaTex Journal_ref: A slightly abridged version of this paper has appeared as a brief report in Phys. Rev. B, Vol. 63, 132405 (2001
    • …
    corecore