6 research outputs found

    Plants can talk: a new era in plant acoustics

    Get PDF
    [EN]Plants release chemical signals to interact with their environment when exposed to stress. Khait and colleagues unveiled that plants ‘verbalize’ stress by emitting airborne sounds. These can train machine learning models to identify plant stressors. This unlocks a new path in plant-environment interactions research with multiple possibilities for future applications

    Effect of Hybridization on Somatic Mutations and Genomic Rearrangements in Plants

    Get PDF
    Hybridization has been routinely practiced in agriculture to enhance the crop yield. Principally, it can cause hybrid vigor where hybrid plants display increased size, biomass, fertility, and resistance to diseases, when compared to their parents. During hybridization, hybrid offspring receive a genomic shock due to mixing of distant parental genomes, which triggers a myriad of genomic rearrangements, e.g., transpositions, genome size changes, chromosomal rearrangements, and other effects on the chromatin. Recently, it has been reported that, besides genomic rearrangements, hybridization can also alter the somatic mutation rates in plants. In this review, we provide in-depth insights about hybridization triggered genomic rearrangements and somatic mutations in plants

    OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.)

    No full text
    ClpB-cytoplasmic (ClpB-cyt)/Hsp100 is an important chaperone protein in rice. Cellular expression of OsClpB-cyt transcript is governed by heat stress, metal stress, and developmental cues. Transgenic rice plants produced with 2 kb OsClpB-cyt promoter driving Gus reporter gene showed heat- and metal-regulated Gus expression in vegetative tissues and constitutive Gus expression in calli, flowering tissues, and embryonal half of seeds. Rice seedlings regenerated with OsClpB-cyt promoter fragment with deletion of its canonical heat shock element sequence (HSE<SUB>-273 to -280</SUB>) showed not only heat shock inducibility of Gus transcript/protein but also constitutive expression of Gus in vegetative tissues. It thus emerges that the only classical HSE present in OsClpB-cyt promoter is involved in repressing expression of OsClpB-cyt transcript under unstressed control conditions. Yeast one-hybrid assays suggested that OsHsfA2c specifically interacts with OsClpB-cyt promoter. OsHsfA2c also showed binding with OsClpB-cyt and OsHsfB4b showed binding with OsClpB-cyt; notably, interaction of OsHsfB4b was seen for all three OsClpB/Hsp100 protein isoforms (i.e., ClpB-cytoplasmic, ClpB-mitochondrial, and ClpB-chloroplastic). Furthermore, OsHsfB4b showed interaction with OsHsfA2c. This study suggests that OsHsfA2c may play a role as transcriptional activator and that OsHsfB4b is an important part of this heat shock responsive circuitry

    Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020

    No full text
    This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-
    corecore