60 research outputs found

    Agro-morphological characterization of lentil germplasm of Indian National Genebank and Development of a core set for efficient utilization in lentil improvement programs

    Get PDF
    Lentil (Lens culinaris Medik.) is one of the major cool-season pulse crops worldwide. Its increasing demand as a staple pulse has led to the unlocking of diverse germplasm collections conserved in the genebanks to develop its superior varieties. The Indian National Genebank, housed at the Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India, currently has 2,324 accessions comprising 1,796 indigenous and 528 exotic collections. This study was conducted to unveil the potential of lentil germplasm by assessing its agro-morphological characteristics and diversity, identifying trait-specific germplasm, and developing a core set. The complete germplasm set was characterized for two years, i.e., 2017-2018 and 2018-2019, and data were recorded on 26 agro-morphological traits. High phenotypic variability was observed for nine quantitative and 17 qualitative traits. A core set comprising 170 accessions (137 Indian and 33 exotic) was derived based on the characterization data as well as geographical origin using a heuristic method and PowerCore software. This core set was found to be sufficiently diverse and representative of the entire collection based on the comparison made using Shannon-Weaver diversity indices and χ2 test. These results were further validated by summary statistics. The core set displayed high genetic diversity as evident from a higher coefficient of variance in comparison to the entire set for individual traits and overall Shannon-Weaver diversity indices (entire: 1.054; core: 1.361). In addition, the total variation explained by the first three principal components was higher in the core set (70.69%) than in the entire collection (68.03%). Further, the conservation of pairwise correlation values among descriptors in the entire and core set reflected the maintenance of the structure of the whole set. Based on the results, this core set is believed to represent the entire collection, completely. Therefore, it constitutes a potential set of germplasm that can be used in the genetic enhancement of lentils

    Morpho-biochemical characterization of a RIL population for seed parameters and identification of candidate genes regulating seed size trait in lentil (Lens culinaris Medik.)

    Get PDF
    The seed size and shape in lentil (Lens culinaris Medik.) are important quality traits as these influences the milled grain yield, cooking time, and market class of the grains. Linkage analysis was done for seed size in a RIL (F5:6) population derived by crossing L830 (20.9 g/1000 seeds) with L4602 (42.13 g/1000 seeds) which consisted of 188 lines (15.0 to 40.5 g/1000 seeds). Parental polymorphism survey using 394 SSRs identified 31 polymorphic primers, which were used for the bulked segregant analysis (BSA). Marker PBALC449 differentiated the parents and small seed size bulk only, whereas large seeded bulk or the individual plants constituting the large-seeded bulk could not be differentiated. Single plant analysis identified only six recombinant and 13 heterozygotes, of 93 small-seeded RILs (<24.0 g/1000 seed). This clearly showed that the small seed size trait is very strongly regulated by the locus near PBLAC449; whereas, large seed size trait seems governed by more than one locus. The PCR amplified products from the PBLAC449 marker (149bp from L4602 and 131bp from L830) were cloned, sequenced and BLAST searched using the lentil reference genome and was found amplified from chromosome 03. Afterward, the nearby region on chromosome 3 was searched, and a few candidate genes like ubiquitin carboxyl-terminal hydrolase, E3 ubiquitin ligase, TIFY-like protein, and hexosyltransferase having a role in seed size determination were identified. Validation study in another RIL mapping population which is differing for seed size, showed a number of SNPs and InDels among these genes when studied using whole genome resequencing (WGRS) approach. Biochemical parameters like cellulose, lignin, and xylose content showed no significant differences between parents and the extreme RILs, at maturity. Various seed morphological traits like area, length, width, compactness, volume, perimeter, etc., when measured using VideometerLab 4.0 showed significant differences for the parents and RILs. The results have ultimately helped in better understanding the region regulating the seed size trait in genomically less explored crops like lentils

    Not Available

    No full text
    Not AvailableSelection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision- making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes from high dimensional expression data for breeding and systems biology studies.Not Availabl

    Not Available

    No full text
    Not AvailableThe analysis of gene sets is usually carried out based on gene ontology terms and known biological pathways. These approaches may not establish any formal relation between genotype and trait specific phenotype. In plant biology and breeding, analysis of gene sets with trait specific Quantitative Trait Loci (QTL) data are considered as great source for biological knowledge discovery. Therefore, we proposed an innovative statistical approach called Gene Set Analysis with QTLs (GSAQ) for interpreting gene expression data in context of gene sets with traits. The utility of GSAQ was studied on five different complex abiotic and biotic stress scenarios in rice, which yields specific trait/stress enriched gene sets.Not Availabl

    Not Available

    No full text
    Not AvailableThe present study examined the spatial market integration across four major potato markets, viz. Agra, Bengaluru, Delhi and Mumbai for the period January, 2005–March, 2018. Johansen’s multivariate co-integration approach has been applied to identify the possible market integration. The results of Johansen’s co-integration test for different markets revealed that all the six market pairs are co-integrated, demonstrating that the selected potato markets have long-run price linkage across them. To supplement the finding of Johansen’s co-integration analysis, we assessed the nature and extent of long run and short run causal relationship between the markets. The results of long run causality showed bidirectional causality for the market pairs: Agra ↔ Bengaluru, Agra ↔ Mumbai, Bengaluru ↔ Delhi and Bengaluru ↔ Mumbai, whereas for market pairs Agra→ Delhi and Mumbai→ Delhi have long-run unidirectional causality. To get the additional evidence as to whether and in which direction price transmission is occurring between the market pairs in short run, Wald test has been used.Not Availabl

    Not Available

    No full text
    Not AvailableTo date, only a few conserved miRNAs have been predicted in hexaploid (AABBDD) bread wheat and till now community behavior among miRNA is still in dark. Analysis of publically available 1287279 ESTs from NCBI resulted 262 putative pre-miRNAs and 39 novel mature miRNAs. A total 22,468 targets were identified on 21 chromosomes. MiRNA target community was identified for genomes with different levels of cross talks. Gene ontology of these community targets suggests their differential involvement in different metabolisms along with common and stringent involvement in nitrogen metabolism.Not Availabl

    Not Available

    No full text
    Not AvailableChromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons.Not Availabl

    EpiSemble: A Novel Ensemble-based Machine-learning Framework for Prediction of DNA N6-methyladenine Sites Using Hybrid Features Selection Approach for Crops

    No full text
    Aim: The study aimed to develop a robust and more precise 6mA methylation prediction tool that assists researchers in studying the epigenetic behaviour of crop plants. Background: N6-methyladenine (6mA) is one of the predominant epigenetic modifications involved in a variety of biological processes in all three kingdoms of life. While in vitro approaches are more precise in detecting epigenetic alterations, they are resource-intensive and time-consuming. Artificial intel-ligence-based in silico methods have helped overcome these bottlenecks. Methods: A novel machine learning framework was developed through the incorporation of four tech-niques: ensemble machine learning, hybrid approach for feature selection, the addition of features, such as Average Mutual Information Profile (AMIP), and bootstrap samples. In this study, four different feature sets, namely di-nucleotide frequency, GC content, AMIP, and nucleotide chemical properties were chosen for the vectorization of DNA sequences. Nine machine learning models, including support vector machine, random forest, k-nearest neighbor, artificial neural network, multiple logistic regression, decision tree, naïve Bayes, AdaBoost, and gradient boosting were employed using relevant features extracted through the feature selection module. The top three best-performing models were selected and a robust ensemble model was developed to predict sequences with 6mA sites. Results: EpiSemble, a novel ensemble model was developed for the prediction of 6mA methylation sites. Using the new model, an improvement in accuracy of 7.0%, 3.74%, and 6.65% was achieved over existing models for RiceChen, RiceLv, and Arabidopsis datasets, respectively. An R package, EpiSem-ble, based on the new model was developed and made available at https://cran.r-project.org/web/packages/EpiSemble/index.html. Conclusion: The EpiSemble model added AMIP as a novel feature, integrated feature selection mod-ules, bootstrapping of samples, and ensemble technique to achieve an improved output for accurate prediction of 6mA sites in plants. To our knowledge, this is the first R package developed for predicting epigenetic sites of genomes in crop plants, which is expected to help plant researchers in their future explorations

    Not Available

    No full text
    Not AvailableNBackground Transcription factors (TFs) and microRNAs (miRNAs) are primary gene regulators within the cell. Regulatory mechanisms of these two main regulators are of great interest to biologists and may provide insights into the abiotic and biotic stresses. However, the interaction between miRNAs and TFs in a gene regulatory network (GRN) still remains uncovered. Previous research has been mostly directed at inferring either miRNA or TF regulatory networks from data. However, networks involving a single type of regulator may not fully reveal the complex gene regulatory mechanisms, therefore study of interplay among these two regulators in gene regulation is important towards explaining the mechanism of different abiotic stresses.Not Availabl

    Abiotic Stress Responsive miRNA-Target Network and Related Markers (SNP, SSR) in Brassica juncea

    No full text
    Abiotic stress is one of the major factors responsible for huge yield loss in crop plants. MicroRNAs play a key role in adaptive responses of plants under abiotic stress conditions through post-transcriptional gene regulations. In present study, 95 potential miRNAs were predicted in Brassica juncea using comparative genomics approach. It was noted that these miRNAs, target several transcription factors (TFs), transporter family proteins, signaling related genes, and protease encoding genes. Nineteen distinct miRNA-target regulatory networks were observed with significant involvement in regulation of transcription, response to stimulus, hormone and auxin mediated signaling pathway related gene ontology (GO) term. The sucrose-starch metabolism and pentose-gluconate interconversion pathways were found significantly enriched for these target genes. Molecular markers such as Simple Sequence Repeats (SSR) and Single Nucleotide Polymorphism (SNPs) were identified on miRNAs (miR-SSRs and miR-SNPs) and their target genes in B. juncea. Notably, one of the miR-SNP (C/T) was found at the 5th position on mature region of miR2926. This C/T transition led to the distorted and unstable hairpin structure of miR2926, consequently complete loss of target function. Hence, findings from this study will lay a foundation for marker assisted breeding for abiotic stress tolerant varieties of B. juncea
    • …
    corecore