35 research outputs found

    Solitary myofibroma of the mandible in an adult with magnetic resonance imaging and positron emission tomography findings: a case report

    Get PDF
    Myofibroma is a benign tumor composed of myoid spindle cells. The prevalence of myofibroma in the oral cavity is very low, with the mandible being the most common site. This report describes an adult case of myofibroma that arose on the mandible and includes magnetic resonance imaging (MRI) and positron emission tomography (PET) findings. On the MRI T1-weighted images, the tumor appeared with signal iso-intensity and was highly and heterogeneously enhanced with contrast material. On the T2-weighted images, it appeared with increased signal intensity. (18) F-fluorodeoxyglucose (FDG)-PET imaging showed abnormal strong accumulation of FDG in the left mandibular region. The tumor was removed by marginal resection of the left mandible under general anesthesia. Histopathological findings revealed that the tumor stroma contained abundant thin-walled vessels. The postoperative course was uneventful, and we found no evidence of recurrence at the postoperative 34-month follow-up

    Rapid production of pure recombinant actin isoforms in Pichia pastoris

    Get PDF
    Actins are major eukaryotic cytoskeletal proteins, which perform many important cell functions, including cell division, cell polarity, wound healing, and muscle contraction. Despite obvious drawbacks, muscle actin, which is easily purified, is used extensively presently for biochemical studies of actin cytoskeleton from other organisms / cell types. Here we report a rapid and cost-effective method to purify heterologous actins expressed in the yeast Pichia pastoris. Actin is expressed as a fusion with the actin-binding protein thymosin β4 and purified using an affinity tag introduced in the fusion. Following cleavage of thymosin β4 and the affinity tag, highly purified functional full-length actin is liberated. We purify actins from S. cerevisiae, S. pombe, and the β- and γ- isoforms of human actin. We also report a modification of the method that facilitates expression and purification of arginylated actin, a form of actin thought to regulate actin dendritic networks in mammalian cells. The methods we describe can be performed in all laboratories equipped for molecular biology, and should greatly facilitate biochemical and cell biological studies of the actin cytoskeleton

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    Cerebrospinal fluid concentration of gefitinib and erlotinib in patients with non-small cell lung cancer.

    Get PDF
    [Purpose]: Several cases have been reported in which central nervous system (CNS) metastases of non-small cell lung cancer (NSCLC) resistant to gefitinib were improved by erlotinib. However, there has been no study in which cerebrospinal fluid (CSF) concentrations of gefitinib and erlotinib are directly compared. Thus, we aimed to compare them. [Methods]: We examined 15 Japanese patients with NSCLC and CNS metastases with epidermal growth factor receptor gene mutations who received CSF examinations during epidermal growth factor receptor-tyrosine kinase inhibitors treatment (250 mg daily gefitinib or 150 mg daily erlotinib). Plasma and CSF concentrations were determined using high-performance liquid chromatography with tandem mass spectrometry. [Results]: The concentration and penetration rate of gefitinib (mean ± standard deviation) in the CSF were 3.7 ± 1.9 ng/mL (8.2 ± 4.3 nM) and 1.13 ± 0.36 %, respectively. The concentration and penetration rate of erlotinib in the CSF were 28.7 ± 16.8 ng/mL (66.9 ± 39.0 nM) and 2.77 ± 0.45 %, respectively. The CSF concentration and penetration rate of erlotinib were significantly higher than those of gefitinib (P = 0.0008 and <0.0001, respectively). The CNS response rates of patients with erlotinib treatment were preferentially (but not significantly) higher than those with gefitinib treatment. (1/3 vs. 4/7, respectively). Leptomeningeal metastases in one patient, which were refractory to gefitinib, dramatically responded to erlotinib. [Conclusions]: This study suggested that higher CSF concentration could be achieved with erlotinib and that erlotinib could be more effective for the treatment for CNS metastases, especially leptomeningeal metastases, than gefitinib

    Expression and characterization of honeybee, Apis mellifera, larva chymotrypsin-like protease

    No full text
    International audiencePreviously, we found three enzyme fractions containing activities for the hydrolysis of royal jelly proteins from honeybee queen larvae. In this study, we identified a honeybee chymotrypsin-like protease (HCLPase) by LC-MS/MS and expressed it as a recombinant protein in Escherichia coli. The protease had an estimated molecular weight of around 26 kDa and showed high specificity for succinyl-Ala-Ala-Pro-Phe p-nitroanilide as a proteolytic substrate. Furthermore, the protease had an optimal pH of 9, and the activity was markedly inhibited by phenylmethylsulfonyl fluoride but not tosyl phenylalanyl chloromethyl ketone, both of which are irreversible inhibitors of chymotrypsin-like serine proteases. These results suggested that this recombinant protease, HCLPase, was a chymotrypsin-like serine protease with different characteristics from mammalian chymotrypsin

    mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells

    Get PDF
    Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG–Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo
    corecore