73 research outputs found

    Risk Factors for Delirium after Spine Surgery: An Age-Matched Analysis

    Get PDF
    Study Design A retrospective cohort study. Purpose To investigate the risk factors for postoperative delirium after spine surgery, excluding older age, which has already been established as a strong risk factor. Overview of Literature More than 30 risk factors have been reported for delirium after spine surgery, making it challenging to identify which factors should be prioritized. We hypothesized that risk factors could not be prioritized to date because the factor of older age is very strong and influenced other factors. To eliminate the influence of older age, we performed an age-matched group comparison analysis for the investigation of other risk factors. Methods This study involved 532 patients who underwent spine surgery. Two patients of the same age without delirium (delirium negative group) were matched to each patient with delirium (delirium positive group). Differences in suspected risk factors for post-operative delirium between the two groups identified from previous reports were analyzed using univariate analysis. Multivariate analysis was performed for factors that showed a significant difference between the two groups in the univariate analysis. Results Fifty-nine (11.1%) of 532 patients developed postoperative delirium after spine surgery. Large amounts of intraoperative bleeding, low preoperative concentration of serum Na, high postoperative (day after surgery) serum level of C-reactive protein, low hematocrit level, low concentration of albumin, and high body temperature were detected as significant risk factors in the univariate analysis. Large amounts of intraoperative bleeding remained a risk factor for postoperative delirium in the multivariate analysis. Conclusions We should pay attention to and take precautions against the occurrence of postoperative delirium after spine surgery in patients of older age or those who experience severe intraoperative bleeding

    Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

    Get PDF
    Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells

    Identification of Sperm-Binding Sites in the N-Terminal Domain of Bovine Egg Coat Glycoprotein ZP4

    No full text
    The species-selective interaction between sperm and egg at the beginning of mammalian fertilisation is partly mediated by a transparent envelope called the zona pellucida (ZP). The ZP is composed of three or four glycoproteins (ZP1–ZP4). The functions of the three proteins present in mice (ZP1–ZP3) have been extensively studied. However, the biological role of ZP4, which was found in all other mammals studied so far, has remained largely unknown. Previously, by developing a solid support assay system, we showed that ZP4 exhibits sperm-binding activity in bovines and the N-terminal domain of bovine ZP4 (bZP4 ZP-N1 domain) is a sperm-binding region. Here, we show that bovine sperm bind to the bZP4 ZP-N1 domain in a species-selective manner and that N-glycosylation is not required for sperm-binding activity. Moreover, we identified three sites involved in sperm binding (site I: from Gln-41 to Pro-46, site II: from Leu-65 to Ser-68 and site III: from Thr-108 to Ile-123) in the bZP4 ZP-N1 domain using chimeric bovine/porcine and bovine/human ZP4 recombinant proteins. These results provide in vitro experimental evidence for the role of the bZP4 ZP-N1 domain in mediating sperm binding to the ZP

    Developing a Time-Based Evaluation Method for Functional Exercises of Emergency Medical Operations

    No full text
    Public health service is one of the most important sectors in terms of saving lives. During a disaster, hospitals and medical groups implement extension tasks from their daily activities. Enhancing coordination across organizations contributes to the removal of communication barriers. Functional exercises are simulated trainings for emergency responders that aim to enhance coordination capabilities. The application of time elements in exercise evaluation methods is a significant area of potential research. We develop methods to quantitatively analyze time spent on completing unit tasks in functional exercises. This study focuses on analyzing observed time data in two functional exercises of the Disaster Medical Operation Center in Kitakyushu, which were repeated in October and November 2015. We employed a censored regression method to analyze the time spent on both complete and incomplete unit tasks together. Differences in processing time for 39 tasks, which were repeated in the two exercises, are visually inspected. Benefits of time study in the evaluation of exercises are presented

    Evaluation of chromID strepto B as a screening media for Streptococcus agalactiae

    Get PDF
    BACKGROUND: Streptococcus agalactiae (Group B Streptococcus, GBS), a leading cause of sepsis and meningitis in infants, can be transmitted vertically from mother to infant during passage through the birth canal. Detection of GBS colonization in perinatal women is a major strategy for the prevention of postpartum neonatal disease. The U.S. Centers for Disease Control and Prevention recommends that all women undergo vaginal-rectal screening for GBS colonization at 35-37 weeks of gestation. ChromID Strepto B (STRB) is a chromogenic GBS screening media on which GBS colonies appear pink or red, while other bacteria are either inhibited or form colonies in other colors. In this study, we compared STRB with a conventional GBS detection method using 5% sheep blood agar (BA) followed by a selective enrichment broth. METHODS: Anovaginal swabs were collected from 1425 women during weeks 35 to 37 of their pregnancies. The swabs were used to inoculate both STRB and BA plates after enrichment with selective Todd Hewitt Broth (THB). A GBS latex agglutination test was used to confirm the identity of isolates from each plate. RESULTS: GBS was recovered from 319 (22.4%) samples with one or both media: 318 on STRB compared to 299 using BA. One false negative was observed on STRB, and 20 false negatives were observed on BA. In addition, non-hemolytic GBS was recovered from 19 (6.0%) samples using STRB. CONCLUSIONS: STRB offers effectiveness and convenience over BA for GBS screening in clinical laboratories. STRB produces fewer false negatives, has a higher detection rate and uses a simple color screen that is ideal for technician-level applications. We recommend STRB as the media of choice for GBS screening
    corecore