7 research outputs found

    17β-Hydroxysteroid Dehydrogenase Type 2 Expression Is Induced by Androgen Signaling in Endometrial Cancer.

    Get PDF
    Endometrial cancer is one of the most common female pelvic cancers and has been considered an androgen-related malignancy. Several studies have demonstrated the anti-cell proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the anti-cancer effect of androgen remain largely unclear. 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2), which catalyzes the conversion of E2 to E1, is known to be upregulated by androgen treatment in breast cancer cells. In this study, we therefore focused on the role of androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT) was found to induce 17β-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19 endometrioid endometrial adenocarcinoma (EEA) tissues, intratumoral DHT concentration was measured by liquid chromatography/electrospray tandem mass spectrometry and was found to be significantly correlated with 17β-HSD2 immunohistochemical status. We further examined the correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53 EEA tissues. 17β-HSD2 status was inversely associated with the histological grade, clinical stage, and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression. 17β-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases, the 17β-HSD2-positive group tended to have better prognosis than that for the negative group with respect to progression-free survival and endometrial cancer-specific survival. These findings suggest that androgen suppresses the estrogen dependence of endometrial cancer through the induction of 17β-HSD2 in endometrial cancer

    A Preclinical Evaluation towards the Clinical Application of Oxygen Consumption Measurement by CERMs by a Mouse Chimera Model.

    Get PDF
    We have developed an automated device for the measurement of oxygen consumption rate (OCR) called Chip-sensing Embryo Respiratory Measurement system (CERMs). To verify the safety and the significance of the OCR measurement by CERMs, we conducted comprehensive tests using a mouse model prior to clinical trials in a human in vitro fertilization (IVF) program. Embryo transfer revealed that the OCR measured by CERMs did not compromise the full-term development of mice or their future fertility, and was positively correlated with adenosine triphosphate (ATP) production and the mitochondrial membrane potential (ΔΨm), thereby indirectly reflecting mitochondrial oxidative phosphorylation (OXPHOS) activity. We demonstrated that the OCR is independent of embryo morphology (the size) and number of mitochondria (mitochondrial DNA copy number). The OCR correlated with the total cell numbers, whereas the inner cell mass (ICM) cell numbers and the fetal developmental rate were not. Thus, the OCR may serve as an indicator of the numbers of trophectoderm (TE) cells, rather than number or quality of ICM cells. However, implantation ability was neither correlated with the OCR, nor the embryo size in this model. This can probably be attributed to the limitation that chimeric embryos contain non-physiological high TE cells counts that are beneficial for implantation. CERMs can be safely employed in clinical IVF owing to it being a safe, highly effective, non-invasive, accurate, and quantitative tool for OCR measurement. Utilization of CERMs for clinical testing of human embryos would provide further insights into the nature of oxidative metabolism and embryonic viability

    Androgen receptor and intracrine androgen signaling in endometrial carcinomas

    Get PDF
    The androgen receptor (AR) is known to play critical roles in the malignancy of prostate cancer as well as the management of male reproductive organs. Endometrial carcinoma, one of the major female cancers, is considered an androgen-related cancer. However, the importance of androgen signaling through its receptor in endometrial carcinomas has not yet been clarified. We recently demonstrated the significance of androgen signaling and intracrine dihydrotestosterone (DHT) in endometrial carcinomas as follows: 1) A positive status of androgen receptor (AR) was significantly associated with high rates of progression-free survival (PFS), but not with endometrial cancer-specific survival (ECSS) in endometrial carcinoma patients; 2) The potent androgen DHT was synthesized from testosterone by 5α-reductase in endometrial carcinoma tissues; and 3) endometrial carcinoma patients that were AR/5α-reductase type 1 double-negative had significantly worse PFS and ECSS. These findings suggest that androgen signaling exerts anti-cancer effects through the intratumoral DHT-AR pathway in endometrial carcinomas. In this highlight article, we describe androgen signaling in endometrial carcinomas, focusing mainly on our recent study entitled “The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma” and discuss the findings of some previous related studies

    Relaxin 2/RXFP1 Signaling Induces Cell Invasion via the β-Catenin Pathway in Endometrial Cancer

    No full text
    Relaxin is known to play an important role in animal pregnancies, including those of humans. It is suggested that relaxin induces aggressive cell growth and invasiveness in several types of cancer, including endometrial cancer. However, the mechanisms of relaxin remain largely unclear. In this study, we examined the effects of relaxin 2 (RLN2), the major circulating relaxin in humans, on human endometrial carcinoma cell lines. RLN2 treatment induced invasion in HEC-1B and Ishikawa cells. RLN2-induced cell invasion was significantly decreased by transfection of relaxin receptor 1 (RXFP1) siRNAs. The β-catenin inhibitor, XAV939, also significantly inhibited the RLN2-induced cell invasions. Both a decrease of cadherin expression and an increase of β-catenin phosphorylation were observed in response to the RLN2 treatment in HEC-1B and Ishikawa cells. We then examined RLN2 and RXFP1 expression in 80 human endometrioid endometrial carcinoma tissues. RLN2 immunoreactivity was detected in the human endometrial carcinoma cells and had a correlative tendency with histological grade and RXFP1. These results suggest that adherens junctions in cancer cells are weakened by the breakdown of the cadherin/catenin complex, which is induced by β-catenin phosphorylation via RLN2/RXFP1 signaling
    corecore