15 research outputs found

    Proving acceptability properties of relaxed nondeterministic approximate programs

    Get PDF
    Approximate program transformations such as skipping tasks [29, 30], loop perforation [21, 22, 35], reduction sampling [38], multiple selectable implementations [3, 4, 16, 38], dynamic knobs [16], synchronization elimination [20, 32], approximate function memoization [11],and approximate data types [34] produce programs that can execute at a variety of points in an underlying performance versus accuracy tradeoff space. These transformed programs have the ability to trade accuracy of their results for increased performance by dynamically and nondeterministically modifying variables that control their execution. We call such transformed programs relaxed programs because they have been extended with additional nondeterminism to relax their semantics and enable greater flexibility in their execution. We present language constructs for developing and specifying relaxed programs. We also present proof rules for reasoning about properties [28] which the program must satisfy to be acceptable. Our proof rules work with two kinds of acceptability properties: acceptability properties [28], which characterize desired relationships between the values of variables in the original and relaxed programs, and unary acceptability properties, which involve values only from a single (original or relaxed) program. The proof rules support a staged reasoning approach in which the majority of the reasoning effort works with the original program. Exploiting the common structure that the original and relaxed programs share, relational reasoning transfers reasoning effort from the original program to prove properties of the relaxed program. We have formalized the dynamic semantics of our target programming language and the proof rules in Coq and verified that the proof rules are sound with respect to the dynamic semantics. Our Coq implementation enables developers to obtain fully machine-checked verifications of their relaxed programs.National Science Foundation (U.S.). (Grant number CCF-0811397)National Science Foundation (U.S.). (Grant number CCF-0905244)National Science Foundation (U.S.). (Grant number CCF-1036241)National Science Foundation (U.S.). (Grant number IIS-0835652)United States. Defense Advanced Research Projects Agency (Grant number FA8650-11-C-7192)United States. Defense Advanced Research Projects Agency (Grant number FA8750-12-2-0110)United States. Dept. of Energy. (Grant Number DE-SC0005288

    Verifying Quantitative Reliability of Programs That Execute on Unreliable Hardware

    Get PDF
    Emerging high-performance architectures are anticipated to contain unreliable components that may exhibit soft errors, which silently corrupt the results of computations. Full detection and recovery from soft errors is challenging, expensive, and, for some applications, unnecessary. For example, approximate computing applications (such as multimedia processing, machine learning, and big data analytics) can often naturally tolerate soft errors. In this paper we present Rely, a programming language that enables developers to reason about the quantitative reliability of an application -- namely, the probability that it produces the correct result when executed on unreliable hardware. Rely allows developers to specify the reliability requirements for each value that a function produces. We present a static quantitative reliability analysis that verifies quantitative requirements on the reliability of an application, enabling a developer to perform sound and verified reliability engineering. The analysis takes a Rely program with a reliability specification and a hardware specification, that characterizes the reliability of the underlying hardware components, and verifies that the program satisfies its reliability specification when executed on the underlying unreliable hardware platform. We demonstrate the application of quantitative reliability analysis on six computations implemented in Rely.This research was supported in part by the National Science Foundation (Grants CCF-0905244, CCF-1036241, CCF-1138967, CCF-1138967, and IIS-0835652), the United States Department of Energy (Grant DE-SC0008923), and DARPA (Grants FA8650-11-C-7192, FA8750-12-2-0110)

    Control Strategies for Self-Adaptive Software Systems

    Get PDF
    The pervasiveness and growing complexity of software systems are challenging software engineering to design systems that can adapt their behavior to withstand unpredictable, uncertain, and continuously changing execution environments. Control theoretical adaptation mechanisms have received growing interest from the software engineering community in the last few years for their mathematical grounding, allowing formal guarantees on the behavior of the controlled systems. However, most of these mechanisms are tailored to specific applications and can hardly be generalized into broadly applicable software design and development processes. This article discusses a reference control design process, from goal identification to the verification and validation of the controlled system. A taxonomy of the main control strategies is introduced, analyzing their applicability to software adaptation for both functional and nonfunctional goals. A brief extract on how to deal with uncertainty complements the discussion. Finally, the article highlights a set of open challenges, both for the software engineering and the control theory research communities

    Bolt

    No full text
    corecore