
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-014 June 19, 2013

Verifying Quantitative Reliability of
Programs That Execute on Unreliable Hardware
Michael Carbin, Sasa Misailovic, and Martin Rinard

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/16520255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Verifying Quantitative Reliability of Programs
That Execute on Unreliable Hardware

Michael Carbin Sasa Misailovic Martin C. Rinard
MIT CSAIL

{mcarbin, misailo, rinard}@csail.mit.edu

Abstract
Emerging high-performance architectures are anticipated to
contain unreliable components that may exhibit soft errors,
which silently corrupt the results of computations. Full de-
tection and recovery from soft errors is challenging, expen-
sive, and, for some applications, unnecessary. For exam-
ple, approximate computing applications (such as multime-
dia processing, machine learning, and big data analytics) can
often naturally tolerate soft errors.

In this paper we present Rely, a programming language
that enables developers to reason about the quantitative reli-
ability of an application – namely, the probability that it pro-
duces the correct result when executed on unreliable hard-
ware. Rely allows developers to specify the reliability re-
quirements for each value that a function produces.

We present a static quantitative reliability analysis that
verifies quantitative requirements on the reliability of an ap-
plication, enabling a developer to perform sound and verified
reliability engineering. The analysis takes a Rely program
with a reliability specification and a hardware specification,
that characterizes the reliability of the underlying hardware
components, and verifies that the program satisfies its relia-
bility specification when executed on the underlying unreli-
able hardware platform. We demonstrate the application of
quantitative reliability analysis on six computations imple-
mented in Rely.

1. Introduction
System reliability is a major challenge in the design of
emerging architectures. Energy efficiency and circuit scal-
ing are becoming major goals when designing new devices.
However, aggressively pursuing these design goals can of-
ten increase the frequency of soft errors in small [49] and
large systems [8] alike. Researchers have developed numer-
ous techniques for detecting and recovering from soft errors
in both hardware [18] and software [15, 38, 42, 47]. These
techniques typically come at the price of increased execution
time, increased energy consumption, or both.

Many computations, however, can tolerate occasional un-
masked errors. Approximate computations (including many
multimedia, financial, machine learning, and big data ana-
lytics applications) can often acceptably tolerate occasional

errors that occur in approximate parts of the computation
and/or the data that it manipulates [11, 32, 43]. Checkable
computations can be augmented with an efficient checker
that ensures that the computation produced a correct result.
If the checker does detect an error, it can reexecute the com-
putation to obtain a correct result.

For both approximate and checkable computations, the
benefits of fast and energy efficient execution without (or
with selectively applied) fault tolerance mechanisms may
outweigh the drawbacks of exposed soft errors.

1.1 Background
Researchers have identified a range of both approximate
computations [1, 2, 13, 23, 30–32, 43, 44, 47, 50, 55] and
checkable computations [6, 7, 27, 40]. Their results show
that it is possible to exploit these properties for a variety
of purposes — increased performance, reduced energy con-
sumption, increased adaptability, and increased fault toler-
ance. One key aspect of such computations is that they typ-
ically contain critical parts (which must execute without er-
ror) and approximate parts (which can execute acceptably
even in the presence of occasional errors).

To support such computations, researchers have proposed
energy-efficient architectures that, because they omit some
error detection and correction mechanisms, may expose
some soft errors to the computation [15, 18–20, 47]. A key
aspect of these architectures is that they contain both reliable
and (more efficient) unreliable components that facilitate
executing the critical and approximate parts of a computa-
tion, respectively. The rationale behind this design is that
developers can identify and separate the critical parts of the
computation (which must execute on the reliable hardware)
from the approximate parts of the computation (which may
execute on the more efficient unreliable components).

Existing systems, tools, and type systems have focused
on helping developers identify, separate, and reason about
the binary distinction between critical and approximate parts
of a computation [11, 19, 29, 43, 44, 47, 48]. However, in
practice, no computation can tolerate an unbounded accu-
mulation of soft errors — to execute acceptably, even the
approximate parts of a computation must execute correctly
with some minimum probability.

1.2 Quantitative Reliability
We present a new programming language, Rely, and an asso-
ciated program analysis that computes the quantitative reli-
ability of the computation — i.e., the probability with which
the computation produces a correct result when its approx-
imate parts execute on unreliable hardware. More specifi-
cally, given a hardware specification and a Rely program,
the analysis computes, for each value that the computation
produces, a conservative probability that the value is com-
puted correctly despite the possibility of soft errors.

In contrast to existing approaches, which support only
a binary distinction between critical and approximate parts
of a computation, quantitative reliability can provide pre-
cise static probabilistic acceptability guarantees for compu-
tations that execute on unreliable hardware platforms.

1.3 Rely
Rely is an imperative language that enables developers to
specify and verify quantitative reliability specifications for
programs that allocate data in unreliable memory regions
and incorporate unreliable arithmetic/logical operations.

Quantitative Reliability Specifications. Rely supports
quantitative reliability specifications for the results that func-
tions produce. For example, a developer can declare a func-
tion with a signature int<0.99*R(x)> f(int x), where
0.99*R(x) is the reliability specification for f’s return
value. The symbolic expression R(x) stands for the relia-
bility of the parameter x upon entrance to f. This reliability
specification therefore quantifies the reliability of f’s return
value as a function of the reliability of its inputs. Specifically,
this specification means that the reliability of f’s return value
is at least 0.99 times x’s reliability upon entry.

Machine Model. Rely assumes a simple machine model
that consists of a processor (with a register file and an arith-
metic/logic unit) and a main memory. The model includes
unreliable arithmetic/logical operations – which return an in-
correct value with non-negligible probability [15, 19, 20, 47]
– and unreliable physical memories – in which data may
be written or read incorrectly with non-negligible probabil-
ity [19, 29, 47]. Rely works with a hardware reliability spec-
ification that lists the probability with which each operation
in the machine model executes correctly.

Rely Language. Rely is an imperative language with in-
teger, logical, and floating point expressions, arrays, condi-
tionals, while loops, and function calls.

In addition to these standard language features, Rely also
allows a developer to allocate data in unreliable memories
and write code that uses unreliable arithmetic/logical oper-
ations. For example, the declaration int x in urel allo-
cates the variable x in an unreliable memory named urel
where both reads and writes of x can fail with some prob-
ability. A developer can also write an expression a +. b,
which is an unreliable addition of the values a and b.

1.4 Quantitative Reliability Analysis
Given a Rely program and the hardware reliability spec-
ification, Rely’s analysis uses a weakest-precondition ap-
proach to generate a symbolic reliability constraint for each
function that captures a set of conditions that is sufficient
to ensure that the function satisfies its reliability specifica-
tion when executed on the underlying unreliable hardware
platform. Conceptually, for each result that a function pro-
duces, these conditions conservatively approximate the reli-
ability of the least reliable path that the program may take
to compute the result. The analysis computes the probabil-
ity that all steps along this path evaluate reliably and checks
if this probability exceeds the probability specified in the
developer-provided reliability specification.

One of the core challenges in designing Rely’s analysis
is dealing with unreliable computation that influences the
execution of control flow constructs.

Conditionals. Unreliable computation of the boolean con-
dition of an if statement introduces uncertainty into branch
that the if statement may take – i.e., it can execute either
the “then” or “else” branch when the opposite branch should
have been executed. If the computation within the branches
can update variables, then the reliability of the condition it-
self must be factored into the reliability of each such variable
to account for a missing or an incorrect update of the variable
due to an incorrect execution of the if statement.

Rely’s analysis infers the set of variables that may be up-
dated on either branch of an if statement and incorporates
the reliability of the if statement’s condition when check-
ing if the reliabilities of these variables satisfy their specifi-
cations.

Loops. The reliability of variables updated within a loop
may depend on the number of iterations that the loop ex-
ecutes. Specifically, if a variable has a loop-carried depen-
dence and updates to that variable involve unreliable oper-
ations, then the variable’s reliability is a monotonically de-
creasing function of the number of iterations of the loop –
on each loop iteration the reliability of the variable degrades
relative to its previous reliability. If a loop does not have a
compile-time bound on the maximum number of iterations,
then the conservative static reliability of such a variable is
zero.

To provide specification and verification flexibility, Rely
provides two constructs: statically unbounded while loops
and statically bounded while loops. Statically unbounded
while loops have the same dynamic semantics as standard
while loops. In the absence of a static bound on the number
of executed loop iterations, Rely’s analysis checks if the
reliability of each variable modified within the loop depends
on the number of iterations of the loop (i.e., it has a loop-
carried dependence and is unreliably modified), and if so the
analysis conservatively sets the variable’s reliability to zero.

n ∈ N
r ∈ R

x, ` ∈ Var
a ∈ ArrVar

e ∈ Exp → n | x | (Exp) | Exp iop Exp
b ∈ BExp → true | false | Exp cmp Exp | (BExp) |

BExp lop BExp | !BExp | !.BExp
CExp → e | a

m ∈ MVar
V → x | a | V, x | V, a

RSpec → r | R(V) | r * R(V)
T → int | int<RSpec>

F → (T | void) ID (P ∗) { S }
P → P0 [in m]
P0 → int x | T a(n)
S → D∗ Ss S?

r

D → D0 [in m]
D0 → int x [= Exp] | int a[n+]
Ss → skip | x = Exp | x = a[Exp+] | a[Exp+] = Exp |

ID(CExp∗) | x = ID(CExp∗) | if` BExp S S | S ; S
while` BExp [: n] S | repeat` n S

Sr → return Exp

Figure 1: Rely’s Language Syntax

Statically bounded while loops allow a developer to pro-
vide a static bound on the maximum number of iterations
of a loop. The dynamic semantics of such a loop is to exit
if the number of executed iterations reaches this bound.
This bound allows Rely’s analysis to soundly construct con-
straints on the reliability of variables modified within the
loop by unrolling the loop for its maximum bound.

1.5 Contributions
This paper presents the following contributions:

Quantitative Reliability Specifications. We present quan-
titative reliability specifications – i.e., the probability that a
program executed on unreliable hardware produces the cor-
rect result – as a constructive method for developing ap-
plications. Quantitative reliability enables developers who
build applications for unreliable hardware architectures to
perform sound and verified reliability engineering.

Language and Semantics. We present Rely, an impera-
tive language that allows developers to write programs that
use unreliable arithmetic/logical operations and allocate data
in unreliable memory regions. Rely also enables developers
to write quantitative reliability specifications for the results
of a program.

We present a dynamic semantics for Rely via a probabilis-
tic small-step operational semantics. This semantics is pa-
rameterized by a hardware reliability specification that char-
acterizes the probability that an unreliable operation (arith-
metic/logical or memory read/write) executes correctly.

Semantics of Quantitative Reliability. We formalize the
semantics of quantitative reliability as it relates to the prob-
abilistic dynamic semantics of a Rely program. Specifically,
we define the quantitative reliability of a variable as the prob-
ability that its value in an unreliable execution of the pro-
gram is the same as that in a fully reliable execution.

We also define the semantics of a logical predicate lan-
guage that can describe and constrain the reliability of vari-
ables in a program.

Quantitative Reliability Analysis. We present a program
analysis that verifies that the dynamic semantics of a Rely

program satisfies its quantitative reliability specifications.
For each function in the program, the analysis computes
a symbolic reliability constraint that characterizes the set
of valid specifications for the function. The analysis then
verifies that the developer-provided specifications are valid
according to the reliability constraint.

The validity problem for predicates generated by the anal-
ysis has an injective mapping to the conjunction of two va-
lidity problems: one in the theory of real-closed fields and
one in the theory of set inclusion constraints. This problem
is therefore decidable and – given the form of the generated
predicates – checkable in linear time.

Case Studies. We have used our Rely implementation to
develop unreliable versions of six building block computa-
tions for media processing, machine learning, and data ana-
lytics applications. Using a quantitative hardware reliability
specification derived from previous unreliable hardware ar-
chitecture projects, we use Rely’s analysis to obtain proba-
bilistic reliability bounds for these computations.

2. Example
Figure 1 presents a selection of Rely’s syntax. Rely is an
imperative language for computations over integers, floats
(not presented), and multidimensional arrays. To illustrate
how a developer can use Rely, Figure 2 presents a Rely-
based implementation of a core component of the motion
estimation algorithm from the x264 video encoder [54].

The function search_ref searches a region (pblocks)
of a previously encoded video frame to find the block of pix-
els that is most similar to a given block of pixels (cblock)
in the current frame. The motion estimation algorithm uses
the results of search_ref to encode cblock as a function
of the identified block.

This is an approximate computation that can trade cor-
rectness for more efficient execution by approximating the
search to find a block. If search_ref returns a block that
is not the most similar, then the encoder may require more
bits to encode the next frame, increasing the size of the re-
sulting encoding. However, previous studies on soft error in-
jection [15] and more aggressive transformations like loop

i

1 #define nblocks 20

2 #define height 16

3 #define width 16

4
5 int <0.99*R(pblocks , cblock)> search_ref (

6 int <R(pblocks)> pblocks (3) in urel ,

7 int <R(cblock)> cblock (2) in urel)

8 {

9 int minssd = INT_MAX ,

10 minblock = -1 in urel;

11 int ssd , t, t1, t2 in urel;

12 int i = 0, j, k;

13
14 repeat nblocks {

15 ssd = 0;

16 j = 0;

17 repeat height {

18 k = 0;

19 repeat width {

20 t1 = pblocks[i,j,k];

21 t2 = cblock[j,k];

22 t = t1 -. t2;

23 ssd = ssd +. t *. t;

24 k = k + 1;

25 }

26 j = j + 1;

27 }

28
29 if (ssd <. minssd) {

30 minssd = ssd;

31 minblock = i;

32 }

33
34 i = i + 1;

35 }

36 return minblock;

37 }

Figure 2: Rely Code for Motion Estimation Computation

perforation [32, 50] have demonstrated that the quality of
the final result of the program is only slightly affected by the
perturbation of this computation.

2.1 Reliability and Memory Region Specifications
The function declaration on Line 5 specifies the types
and reliabilities of search_ref’s parameters and return
value. The parameters of the function are pblocks(3), a
three-dimensional array of pixels, and cblock(2), a two-
dimensional array of pixels. In addition to the standard sig-
nature, the function declaration contains reliability specifica-
tions for each result that the function produces and memory
region specifications for each of its arguments.

Reliability Specification. Rely’s reliability specifications
express the reliability of the function’s results as a function
of the reliabilities of its inputs. For example, the specifi-
cation for the reliability of search_ref’s return value is
int<0.99*R(pblocks,cblock)>. This states that the re-
turn value is an integer with a reliability that is at least

99% of the joint reliability of the parameters pblocks and
cblock on the entry to the function.

Rely uses the R(pblocks, cblock) notation to denote
the joint reliability of the input parameters. The joint relia-
bility of a set of parameters is the probability that they all
have the correct value when passed in from the caller. This
specification holds for all possible values of the joint relia-
bility of pblocks and cblock. Therefore, if the contents of
pblocks and cblock are fully reliable (correct with proba-
bility one), then the return value is correct with probability
0.99.

In Rely, arrays are passed as references and the execu-
tion of a function can, as a side effect, modify an array’s
contents. The reliability specification of an array therefore
allows a developer to constrain the reliability degradation of
its contents. Here pblocks has an output reliability specifi-
cation of R(pblocks) (and similarly for cblock), meaning
that all of pblock’s elements are at least as reliable when the
function exits as they were on entry to the function.

Memory Region Specification. Each parameter declara-
tion also specifies the memory region in which the data of the
array is allocated. Memory regions correspond to the physi-
cal partitioning of memory at the hardware level into regions
of varying reliability. Here the elements of both pblocks
and cblock are allocated in the unreliable memory region
urel. A developer can specify the memory region of local
variables in an analogous manner.

2.2 Unreliable Computation
Lines 9-12 declare the local variables of the function. Like
parameter declarations, variable declarations specify the
memory region of each variable. In Rely, if a developer does
not provide a memory region (as is the case for the variables
i, j, and k on Line 12) then the variables are allocated in a
default, fully reliable memory region.

The body of the function computes the value (minssd)
and the index (minblock) of the most similar block, i.e.
the block with the minimum distance from cblock. The
repeat statement on line 14, iterates a constant nblock
number of times, enumerating over all previously encoded
blocks. For each encoded block, the repeat statements on
lines 17 and 19 iterate over the height*width pixels of
the block and compute the sum of the squared differences
(ssd) between each pixel value and the corresponding pixel
value in the current block cblock. Finally, the computation
on lines 29 through 32 selects the block that is most similar
to the currently encoded block.

The operations on Lines 22, 23, and 29 are unreliable
arithmetic/logical operations. In Rely, every arithmetic/log-
ical operation has an unreliable counterpart that is denoted
by suffixing a period after the operation symbol. For exam-
ple, “-.” denotes unreliable subtraction and “<.” denotes
unreliable comparison.

reliability spec {

operator (+.) = 1 - 10^-7;

operator (-.) = 1 - 10^-7;

operator (*.) = 1 - 10^-7;

operator (<.) = 1 - 10^-7;

memory rel {rd = 1, wr = 1};

memory urel {rd = 1 - 10^-7, wr = 1};

}

Figure 3: Hardware Reliability Specification

Registers Memory

CU

CPU
Reliable Unreliable

ALU

Figure 4: Machine Model Illustration. Gray boxes represent
unreliable components

2.3 Hardware Reliability Specification
Rely’s analysis works with a hardware reliability specifi-
cation that specifies the reliability of arithmetic/logical and
memory operations. Figure 3 presents a hardware reliability
specification that we have created using results from existing
computer architecture literature [18, 29]. The specification
consists of a set of individual specifications for the reliabil-
ity – the probability of a correct execution – of arithmetic
operations (e.g., +.) and read/write operations on memory
regions.

Figure 4 illustrates the conceptual machine model for
our hardware reliability specifications. The machine model
consists of a CPU and a memory.

CPU. The CPU consists of 1) a register file, 2) arithmetic
logical units that perform operations on data in registers, and
3) a control unit that manages the program’s execution.

The arithmetic-logical unit can execute reliably or unre-
liably. We have represented this in Figure 4 by physically
separate reliable and unreliable functional units, but this dis-
tinction can be achieved through other mechanisms, such as
dual-voltage architectures [19].

Due to soft errors, an execution of an arithmetic/logical
operation on an unreliable functional unit produces the cor-
rect result with only some probability (as opposed to com-
puting the correct result for all executions). These soft errors
may occur due to, for example, power variations within the
ALU’s combinatorial circuits or particle strikes. For the pre-
sented hardware model, we use have used the probability of
failure of an unreliable multiplication operation from [18,
Figure 9]. We assume the same error rate for the remaining
ALU operations.

As is provided by existing computer architecture propos-
als [19, 47], the control unit of the CPU reliably fetches, de-
codes, and schedules instructions; given a virtual address in

the application, the control unit correctly computes a physi-
cal address and operates only on that physical address.

Memory. The memory regions listed in the hardware spec-
ification are exactly those that can be referred by a parame-
ter or variable’s memory region specification. Rely supports
machine models that have an arbitrary number of memory
partitions (each potentially of different reliability), but for
simplicity we have partitioned memory into two regions: re-
liable and unreliable. Note that the specification for a mem-
ory region includes two probabilities: the probability that a
read is successful (rd) and the probability that a write is suc-
cessful (wr).

Due to soft errors, reading (writing) from unreliable
memory yields (stores) the correct value with only some
probability. These soft errors may occur due to, for example,
decreased refresh rate of DRAM cells or particle strikes. For
the presented hardware model, we have used the probability
of a bit flip in a memory cell from [29, Figure 4] and then
extrapolated that value to produce the probability of a bit flip
within a 32-bit word.

2.4 Reliability Analysis
Rely’s analysis system takes as inputs a program written in
Rely and a hardware reliability specification. For each func-
tion, the analysis verifies that the reliability of the function’s
return value and the output reliabilities of array arguments
under the hardware model always exceed the developer’s re-
liability specifications.

The analysis works by generating constraints that charac-
terize the set of all valid specifications for the function. The
analysis then verifies that the developer-provided specifica-
tions satisfy these constraints.

Reliability Approximation. The analysis generates con-
straints according to a conservative approximation of the se-
mantics of the function. Specifically, it characterizes the reli-
ability of an output of a function according to the probability
that the statements in the function that compute the output
execute fully reliably.

To illustrate the intuition behind this design point, con-
sider execution of an assignment statement x = e. The relia-
bility of x after this statement is the probability that x con-
tains the same value in an unreliable execution as in the fully
reliable execution. There are two ways that x can contain the
same value in both the reliable and unreliable executions: 1)
the reliable and unreliable executions have the same values
for all variables referenced in e and both the evaluation of e
and the assignment to x encounter no faults, or 2) the unre-
liable execution encounters faults during the evaluation of e
and the assignment to x, and by chance, the value assigned
to x is the same as in the reliable execution.

Our analysis conservatively approximates the reliability
of the assignments by only considering the first scenario.
This design point simplifies our reasoning to the task of
computing the probability that an execution is fully reliable

as opposed to reasoning about all possible executions of
an expression, a variable assignment, or by extension, a
program. As a consequence, the analysis requires as input
only the probability that an arithmetic/logical operation or
a memory operation execute correctly. It does not require a
full characterization of how soft errors manifest during the
execution of an operation, such as a probability that power
variation or a particle strike affects a particular bit in a word.

Constraint Generation. The analysis of a function gener-
ates a reliability constraint that conservatively bounds the set
of valid specifications for the function. As a weakest precon-
ditions generator, the analysis starts at the end of the function
from an initial constraint that must be true when the function
returns. The analysis starts with the constraint that the actual
reliability of each function output must be at least that given
in its specification. The analysis then works backwards pro-
ducing a new constraint such that if the new constraint holds
before a sequence of analyzed statements, then the initial
constraint holds at the end of the function, after execution
of the statements.

For search_ref the analysis starts at the return state-
ment. It produces three constraints, one for each function
output. Each constraint has the form Aout ≤ r · R(X),
where Aout is a placeholder for a developer-provided relia-
bility specification for an output out, r is a numerical value
between 0 and 1, and R(X) the joint reliability of the set of
variables X .

The constraint for the return value is Aret ≤ (1− 10−7) ·
R(minblock). This constraint means that the reliability
specified by the developer must be less than or equal to
the reliability of reading minblock from unreliable mem-
ory – which is 1 − 10−7 (according the hardware reli-
ability specification) – multiplied by the probability that
the address where minblock is located contains the cor-
rect value. The constraints for pblocks and cblock are
Apblocks ≤ R(pblocks) and Acblock ≤ R(cblock), re-
spectively.

Constraint Propagation. The analysis next propagates
the constraints backwards through the function, updating the
constraints to reflect the effects of a program’s statements
on the reliability of the function’s results. For example, con-
sider the statement minblock = i on Line 31. The analysis
will update the constraint Aret ≤ (1−10−7) ·R(minblock)
to reflect the dependence of minblock on i. At a first ap-
proximation, the new constraint is Aret ≤ (1− 10−7) · R(i)
because reads from i are fully reliable – as it is allocated in
reliable memory – and writes to minblock are fully reliable
– as specified in the hardware specification. However, the
analysis must also consider additional dependencies for this
update because it occurs within an if statement (Line 29)
and a loop (Line 14) and is therefore dependent on the reli-
ability of the expressions that control the execution of those
constructs.

Conditionals. The condition of an if statement may en-
counter faults that force the execution of the program down a
different path. For example, the if statement on Line 29 uses
an unreliable comparison operation on ssd and minssd,
which both reside in unreliable memory. Because this ex-
pression is unreliable, the reliability of minblock when
modified on Line 31 must also depend on the reliability of
this conditional.

To capture the implicit dependence of a variable on an
unreliable condition, Rely’s analysis uses latent control flow
variables to make these dependencies explicit. For if state-
ments, a control flow variable is a unique program variable
(one for each statement) that records whether the conditional
evaluated to true or false. Let the control flow variable for the
if statement on Line 29 be named `29.

The analysis first constructs a constraint that is a con-
junction of two constraints: one that must hold for the
“then” branch and one that must hold for the “else” branch.
The analysis of the minblock = i statement in the “then”
branch will add the dependence on `29 by transforming the
constraint Aret ≤ (1 − 10−7) · R(minblock) to the con-
straint Aret ≤ (1 − 10−7) · R(`29, i), which includes the
dependence of minblock on both `29 and i. The “else”
branch of the conditional is empty – therefore its constraint
is Aret ≤ (1− 10−7) · R(minblock), which reflects the fact
that minblock keeps its previous values.

As a final step, when the analysis leaves the scope of the
conditional, it will again transform the constraint to include
the direct dependence of the control flow variable on the
reliability of the if statement’s condition. Namely, the new
constraint for the “then” branch will be Aret ≤ (1− 10−7)2 ·
R(i, ssd, minssd) where the reliability of the operation
<. has been incorporated along with the reliabilities of the
variables ssd and minssd.

While minblock is not modified in the “else” branch,
the probability of executing the “else” branch instead of the
“then” branch – which would incorrectly modify minblock
– depends on the reliability of the conditional. The anal-
ysis therefore updates the constraint for the “else” branch
include this dependence, producing the constraint Aret ≤
(1 − 10−7) · R(minblock, ssd, minssd). In general, if a
variable is modified on either branch of a conditional, then
its reliability depends on the reliability of the condition.

Loops. This update to minblock also occurs within a
loop. As with an if statement, the condition of a loop can
be unreliable and therefore, the analysis uses a control flow
variable to incorporate the reliability of the loop’s condition.

A key difficulty with reasoning about the reliability of
variables modified within a loop is the fact that the reliabil-
ity of a variable that is updated unreliably and has a loop-
carried dependence monotonically decreases as a function
of the number of loop iterations. To enable straightforward
reasoning about loops, Rely offers two types of loop con-
structs:

• Unbounded Loops. An unbounded loop is a loop that
does not have a compile-time bound on the number of it-
erations. For these loops, Rely’s analysis conservatively
sets the reliability of modified variables to 0, as the reli-
ability of variables modified within the loop can, in prin-
ciple, decrease arbitrarily.
• Bounded Loops. A bounded loop is a loop that has a

compile-time bound on the number of loop iterations.
The repeat loop on Line 14 is a bounded loop that iter-
ates nblocks times – where nblocks is a compile-time
constant – and therefore decreases the reliability of any
modified variables nblocks times. Because the reliabil-
ity decrease is bounded, Rely’s analysis uses unrolling to
reason about the effects of a bounded loop.

After unrolling a single iteration of the loop that begins at
Line 14 and performing analysis on its body, Rely produces
Aret ≤ (1−10−7)2564 ·R(pblocks, cblock, i, ssd, minssd, `14)

as a constraint, where `14 is the loop’s control flow variable.

Specification Checking. Once the analysis reaches the
beginning of the function after fully unrolling the loop on
Line 14, it has a set of constraints that bound the set of
valid specifications as a function of the reliability of the
parameters of the function. For search_ref, the analy-
sis generates the constraints Aret ≤ 0.994885125493 ·
R(pblocks, cblock), Apblocks ≤ R(pblocks), and
Acblock ≤ R(cblock) meaning that any specifications that
can be substituted for Aret, Apblocks, and Acblock and still
satisfy the inequality are valid specifications. In the exam-
ple, these specifications are 0.99 · R(pblocks,cblock),
R(pblocks), andR(cblock), respectively.

The constraint checker verifies the validity of each predi-
cate by checking that 1) the numerical constant in the speci-
fication is less than or equal to the numerical constant com-
puted by the analysis and 2) the set of variables in the reli-
ability factor computed by the analysis is a subset of the set
of variables in the reliability factor provided by the specifi-
cation. For the predicate on the return value, the checker ver-
ifies that 1) 0.99 ≤ 0.994885125493 and 2) both the spec-
ification and the reliability factor generated by the analysis
reference the pblocks and cblock variables. For the pred-
icates for the pblocks and cblock variables, the checker
verifies that 1) the numerical constant in the specification
and that generated by the analysis are the same (equal to
1.0) and 2) the set of variables in the reliability factor gener-
ated by the analysis are the same as that in the specification
({pblocks} and {cblock}, respectively).

3. Language Semantics
Because soft errors may probabilistically change the execu-
tion path of a program, we model the semantics of a Rely
program with a probabilistic, non-deterministic transition
system. Specifically, the dynamic semantics defines proba-
bilistic transition rules for each arithmetic/logical operation
and each read/write on an unreliable memory region.

Over the next several sections we develop a small-step
semantics that specifies the probability of each individual
transition of an execution. In Section 3.5 we provide big-step
definitions that specify the probability of an entire program
execution.

3.1 Design
Rely’s semantics models an abstract machine that consists of
a heap and a stack. The heap is an abstraction over the phys-
ical memory of the concrete machine, including its various
reliable and unreliable memory regions. Each variable (both
scalar and array) of a function is allocated in the heap. The
stack consists of frames – one for each function invocation
– which contain references to the locations of each allocated
variable. The stack is allocated in a reliable memory region
of the concrete machine.

We have designed the semantics of Rely to exploit the
full availability of unreliable computation in an application.
Rely therefore only requires reliable computation at points
where doing so ensures that programs are memory safe and
exhibit control flow integrity.

Memory Safety. To protect references that point to mem-
ory locations from corruption, the stack is allocated in a reli-
able memory region and stack operations – i.e., pushing and
popping frames – execute reliably.

To prevent out-of-bounds memory accesses that may oc-
cur as consequence of an unreliable array index computa-
tion, each array read and write includes a bounds check.
These bounds check computations execute reliably.

Control Flow Integrity. To prevent execution from taking
control flow edges that do not exist in the program’s static
control flow graph, Rely assumes that instructions are 1)
stored in reliable memory and 2) fetched and decoded re-
liably – as is supported by existing unreliable computer ar-
chitectures [19, 47].

3.2 Preliminaries
Hardware Reliability Specification. A hardware reliabil-
ity specification ψ ∈ Ψ = (iop+cmp+ lop+Mop)→ R is a
finite map from arithmetic/logical operations (iop, cmp, lop)
and memory region operations (Mop) to reliabilities.

Arithmetic/logical operations iop, cmp, and lop include
both reliable and unreliable versions of each integer, com-
parison, and logical operation. For each reliable operation,
the probability that the operation executes correctly is 1.0.
We define the maps rd : M → Mop and wr : M → Mop,
which provide the memory operations for reads and writes
(respectively) on memory regions (m ∈M). M is the set of
all memory regions given in the hardware reliability specifi-
cation.

We use 1ψ to denote the hardware reliability specifica-
tion for fully reliable hardware in which all arithmetic/-
logical and memory operations have reliability 1.0 – i.e.,
∀op. 1ψ(op) = 1.

E-VAR-C
〈nb, 〈1〉,m〉 = σ(x)

〈x, σ, h〉C, ψ(rd(m))−→ψ h(nb)

E-VAR-F
〈nb, 〈1〉,m〉 = σ(x) p = (1− ψ(rd(m))) · Pf (nf | rd(m), h(nb))

〈x, σ, h〉〈F,nf 〉, p−→ψ nf

E-IOP-R1
〈e1, σ, h〉 θ, p−→ψ e

′
1

〈e1 iop e2, σ, h〉 θ, p−→ψ e
′
1 iop e2

E-IOP-R2
〈e2, σ, h〉 θ, p−→ψ e

′
2

〈n iop e2, σ, h〉 θ, p−→ψ n iop e′2

E-IOP-C

〈n1 iop n2, σ, h〉C, ψ(iop)−→ψ iop(n1, n2)

E-IOP-F
p = (1− ψ(iop)) · Pf (nf | iop, n1, n2)

〈n1 iop n2, σ, h〉
〈F,nf 〉, p−→ψ nf

Figure 5: Dynamic Semantics of Integer Expressions

Unreliable Result Distribution. An unreliable result dis-
tribution Pf (nf | op, n1, . . . , nk) models the manifestation
of a soft error during an incorrect execution of an operation.
Specifically, it provides the probability that an incorrect ex-
ecution of an operation op on operands n1, . . . , nk produces
a value nf when it encounters a soft error. An unreliable re-
sult distribution is a probability mass function (conditioned
on the operation and its operands) with the additional con-
straint that it assigns zero probability to the correct result of
an operation.

An unreliable result distribution function is inherently
tied to the properties of the underlying hardware. We use
these distributions only to specify the dynamic semantics
of a program. Rely’s reliability analysis, on the other hand,
does not require these distributions because their shape is
independent of the reliability of an operation (i.e., they as-
cribe zero probability to the correct result). These distribu-
tions therefore do not need to be explicitly specified in the
hardware reliability specification.

References. A reference is a tuple 〈nb, 〈n1, . . . , nk〉,m〉 ∈
Ref consisting of a base address nb ∈ Loc, a dimension de-
scriptor 〈n1, . . . , nk〉, and a memory region m. An address
is a finite non-negative integer (Loc) and each value is an
integer. References describe the location, dimensions, and
memory region of scalars and arrays that are allocated in
the heap. A base address and the components of a dimen-
sion descriptor are finite non-negative integers. In the case
of scalars, the dimension descriptor is always the single-
dimension, single-element descriptor 〈1〉.

For notational convenience, we use projections πbase and
πdim to select the base address and the dimension descriptor
of the array, respectively.

Frames, Stacks, and Heaps. A frame σ is an element of
the domain Σ = Var → Ref which is the set of finite maps
from program variables to references. A stack δ ∈ ∆ is a list
of frames. Stacks are constructed by the standard operator
:: for list construction. A heap h ∈ H = Loc → Z is a
finite map from addresses to integer values stored at these
addresses. Floating point and boolean values are stored in
memory as encoded integers.

For notational convenience, we also define an environ-
ment ε ∈ E = ∆ × H to be a pair 〈δ, h〉 consisting of a

stack δ and a heap h. We use the projections πheap and πframe
to select the heap and the top frame of the stack from an
environment variable, respectively.

3.3 Semantics of Expressions
Figure 5 presents a selection of the rules for the dynamic
semantics of integer expressions. The labeled probabilis-
tic small-step evaluation relation 〈e, σ, h〉 θ, p−→ψ e

′ states that
from a frame σ and a heap h, an expression e evaluates in
one step with probability p to an expression e′ given a hard-
ware reliability specification ψ. The label θ ∈ {C, 〈F, nf 〉}
denotes whether the transition corresponds to a correct (C)
or faulty (〈F, nf 〉) evaluation of that step. For a faulty transi-
tion, nf represents the value that the fault introduced in the
semantics of the operation.

Variable Reference. A variable reference x reads the
value stored in the memory address for x. The are two pos-
sibilities for the evaluation of a variable reference:

• Correct [E-VAR-C]. The variable reference evaluates
correctly and successfully returns the integer stored in
x. This happens with probability ψ(rd(m)), where m is
the memory region in which x allocated. This probability
is the reliability of reading from x’s memory region.
• Faulty [E-VAR-F]. The variable reference experiences

a fault and returns another integer nf . The probability
that the faulty execution returns a specific integer nf is
(1− ψ(rd(m))) · Pf (nf | rd(m), h(nb)). Pf is the unre-
liable result distribution that gives the probability that a
failed memory read operation returns a value nf instead
of the true stored value h(nb). As aforementioned, the
shape of this distribution comes from the properties of
the underlying unreliable hardware, but this shape does
not need to be specified to support Rely’s analysis. We
use this distribution only to support a precise formaliza-
tion of the dynamic semantics of a program.

Binary Integer Operation. A binary integer operation
e1 iop e2 evaluates its two subexpressions e1 and e2 and
returns the result of the operation. An operation may expe-
rience a fault while evaluating e1, evaluating e2, or while
applying the operation to the reduced values of the two
subexpressions.

Evaluation of an integer operation proceeds by first re-
ducing e1 [E-IOP-R1] to the value n1 and then reducing e2
[E-IOP-R2] to n2. Once each subexpression has been fully
reduced, evaluation continues with one of two possibilities:

• Correct [E-IOP-C]. The integer operation evaluates cor-
rectly with probability ψ(iop) and successfully returns
the result of applying the operation on the reduced val-
ues of the two subexpressions.
• Faulty [E-IOP-F]. The integer operation experiences a

fault with probability (1 − ψ(iop)) and returns another
integer nf with probability Pf (nf | iop, n1, n2). As
with faulty variable references, Pf is a distribution over
possible values of nf given a fault while executing the
operation iop on n1 and n2.

We elide a presentation of the dynamic semantics of
boolean and floating point expressions, which follows closely
that of the dynamic semantics of integer expressions.

3.4 Semantics of Statements
Figure 6 presents the scalar manipulation and control flow
fragment of Rely. The labeled probabilistic small-step exe-
cution relation 〈s, ε〉 θ, p−→ψ 〈s′, ε′〉 states that execution of
the statement s in the environment ε takes one step yield-
ing a statement s′ and an environment ε′ with probability p
under the hardware reliability specification ψ. As in the dy-
namic semantics for expressions, a label θ denotes whether
the transition evaluated correctly (C) or experienced a fault
(〈F, nf 〉).

The semantics of the statements in our language are
largely similar to that of traditional presentations except that
the statements have the additional ability to encounter faults
during evaluation.

Integer Variable Declarations. An integer variable dec-
laration int x = e in m declares a new variable to be used
in a function. The semantics first reduces the declaration’s
initializer [E-DECL-R], then allocates a new variable in the
heap using the memory allocator function new [E-DECL].
The allocator new is a potentially non-deterministic func-
tion. It takes a heap h, a memory region m, and a dimension
descriptor (in this case a single-dimension, single-element
array) and returns a fresh address nb that resides in mem-
ory region m and a new heap h′ that reflects updates to the
internal memory allocation data structures.

To express the semantics of potentially non-deterministic
memory allocators, we define the probability distribution
Pm(nb, h′ | h,m, nd), which returns the probability that a
memory allocator returns a location nb and an updated heap
h′, given the initial heap h, a memory region m, and a di-
mension descriptor nd. Note that this distribution is inher-
ently tied to the semantics of the memory allocator and is
defined only to support a precise formalization of the dy-
namic semantics of a program, and therefore does not need
to be specified by the developer.

The semantics finally sets the new reference for x within
the current frame and then reduces to an assignment x = n,
ensuring that x is appropriately initialized.

Integer Variable Assignment. An assignment statement
x = e assigns the result of evaluating e to the variable x.
Evaluation of the statement proceeds by first reducing e to
an integer n [E-ASSIGN-R]. After reducing e, there are then
two possibilities for evaluation:

• Correct [E-ASSIGN-C]. The write to the variable suc-
ceeds with probability ψ(wr(m)) and then n is stored
into the memory address of x.
• Faulty [E-ASSIGN-F]. The write to the variable en-

counters a fault with probability 1 − ψ(wr(m)) and in-
stead stores an arbitrary value nf into x with probabil-
ity Pf (nf | wr(m), n), where Pf is an unreliable result
distribution given a fault during writing the value n to
memory.

Conditionals. Evaluation of an if condition if` b s1 s2
proceeds by first reducing b to a boolean value true or false
[E-IF]. After fully reducing the boolean expression, the
statement transfers control either to s1 (if the condition is
true [E-IF-TRUE]) or to s2 (if the condition is false [E-IF-
FALSE]). [E-IF-TRUE] and [E-IF-FALSE] always transfer
control to s1 and s2, respectively.

We have annotated each conditional with a unique control
flow variable `. This control flow variable records whether
the condition evaluated to true (` = 1) or false (` = 0), re-
spectively. Control flow variables are latent variables that are
not visible to the developer. Control variables are instead ad-
ditional semantic instrumentation that Rely uses in its anal-
ysis of a program to reason about the reliability of program
variables that are modified under conditionals. Specifically,
the reliability of those variables depends on the reliability
of the conditional’s expression (Section 2.4 and Section 5).
To support the dynamic semantics, control flow variables are
implicitly declared and allocated in reliable memory on en-
try to a function.

Sequential Composition. Evaluation of a sequential com-
position of statements s1 ; s2 proceeds by first reducing s1
to a skip statement [E-SEQ-R1] and then transferring con-
trol to s2 [E-SEQ-R2].

Unbounded while loops. The semantics of an unbounded
while loop, while` b s, is similar to that in traditional pre-
sentations. The statement reduces to an if conditional con-
sisting of a test of b and, if true, an execution of the loop
body s followed by another instance of the while loop [E-
WHILE].

Bounded while and repeat loops. Bounded while loops,
while` b : n s, (and repeat` n s) are while loops that ex-
ecute at most n iterations. The semantics of the bounded
while is similar to that for unbounded loops except that 1)
it first initializes the control flow variable ` to zero, 2) before

E-DECL-R
〈e, σ, h〉 θ, p−→ψ e

′

〈int x = e inm, 〈σ :: δ, h〉〉 θ, p−→ψ 〈int x = e′ inm, 〈σ :: δ, h〉〉

E-DECL
〈nb, h′〉 = new(h,m, 〈1〉) pm = Pm(nb, h

′ | h,m, 〈1〉)
〈int x = n inm, 〈σ :: δ, h〉〉 C, pm−→ψ 〈x = n, 〈σ[x 7→ 〈nb, 〈1〉,m〉] :: δ, h′〉〉

E-ASSIGN-R
〈e, σ, h〉 θ, p−→ψ e

′

〈x = e, 〈σ :: δ, h〉〉 θ, p−→ψ 〈x = e′, 〈σ :: δ, h〉〉

E-ASSIGN-C
〈nb, 〈1〉,m〉 = σ(x) p = ψ(wr(m))

〈x = n, 〈σ :: δ, h〉〉 C, p−→ψ 〈skip, 〈σ :: δ, h[nb 7→ n]〉〉

E-ASSIGN-F
〈nb, 〈1〉,m〉 = σ(x) p = (1− ψ(wr(m))) · Pf (nf | wr(m), n)

〈x = n, 〈σ :: δ, h〉〉 〈F,nf 〉, p−→ψ 〈skip, 〈σ :: δ, h[nb 7→ nf]〉〉

E-IF

〈b, σ, h〉 θ, p−→ψ b
′

〈if` b s1 s2, 〈σ :: δ, h〉〉 θ, p−→ψ 〈if` b′ s1 s2, 〈σ :: δ, h〉〉

E-IF-TRUE

〈if` true s1 s2, ε〉 C, 1−→ψ 〈` = 1 ; s1, ε〉

E-IF-FALSE

〈if` false s1 s2, ε〉 C, 1−→ψ 〈` = 0 ; s2, ε〉

E-SEQ-R1

〈s1, ε〉 θ, p−→ψ 〈s′1, ε′〉
〈s1 ; s2, ε〉 θ, p−→ψ 〈s′1 ; s2, ε′〉

E-SEQ-R2

〈skip ; s2, ε〉 C, 1−→ψ 〈s2, ε〉

E-WHILE

〈while` b s, ε〉 C, 1−→ψ 〈if` b {s ; while` b s} {skip}, ε〉

E-WHILE-N

〈while` b : n s, ε〉 C, 1−→ψ 〈` = 0 ; while` (` < n && b) {s ; ` = ` + 1}, ε〉

E-REPEAT

〈repeat` s n, ε〉
C, 1−→ψ 〈while` true : n s, ε〉

Figure 6: Dynamic Semantics of Statements

each iteration, the loop checks if ` < n and exits if other-
wise, and 3) after each iteration, it increments ` by one. All
these operations are done reliably.

3.4.1 Arrays and Functions
We have included the semantics for arrays and functions in
the paper’s Appendix1.

3.5 Big-step Notations
We use the following big-step execution relation in the re-
mainder of the paper.

Definition 1 (Big-step Trace Semantics).

〈s, ε〉 τ, p=⇒ψ ε
′ ≡ 〈s, ε〉 θ1, p1−→ψ . . .

θn, pn−→ψ 〈skip, ε′〉
where τ = θ1, . . . , θn and p = Π

i
pi

The big-step trace semantics for statements is the reflex-
ive transitive closure of the small-step execution relation that
records a trace of the execution. A trace τ is the sequence of
all small-step transition labels. The probability of a trace, p,
is the product of the probabilities of each small-step transi-
tion.

Definition 2 (Big-step Aggregate Semantics).

〈s, ε〉 p
=⇒ψ ε

′ where p = Σ
τ
pi such that 〈s, ε〉 τ, pi=⇒ψ ε

′

1 Appendix is available at http://groups.csail.mit.edu/pac/rely/

A big-step aggregate semantics enumerates over all fi-
nite length traces and collects the aggregate probability that
a statement s evaluates to an environment ε′ from an envi-
ronment ε given a hardware reliability specification ψ. The
big-step aggregate semantics therefore gives the total proba-
bility that a statement s starts from an environment ε and its
execution terminates in an environment ε′.

4. Semantics of Quantitative Reliability
Given our language semantics, we next present the basic
definitions that give a semantic meaning to the reliability of
a Rely program.

4.1 Paired Execution
The paired execution semantics is the primary execution
relation that enables us to reason about the reliability of
a program. Specifically, the relation pairs the semantics of
the program when executed reliably with its semantics when
executed unreliably.

Definition 3 (Paired Execution). ϕ ∈ Φ = E→ R

〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉 such that 〈s, ε〉 τ,1
=⇒1ψ ε

′ and
ϕ′(ε′u) =

∑
εu∈E

ϕ(εu) · pu where 〈s, εu〉 pu=⇒ψ ε
′
u

The relation states that from a configuration 〈ε, ϕ〉 con-
sisting of an environment ε and an unreliable environment
distribution ϕ, the paired execution of a statement s yields a
new configuration 〈ε′, ϕ′〉.

The environments ε and ε′ are related by the fully reliable
execution of s. Namely, an execution of s from an environ-
ment ε yields ε′ under the fully reliable hardware model 1ψ .

The unreliable environment distributions ϕ and ϕ′ are
probability mass functions that map an environment to the
probability that the unreliable execution of the program is in
that environment. The unreliable environment distribution ϕ
gives the distribution on starting environments for the un-
reliable execution of s whereas ϕ′ gives the distribution on
possible environments after executing s. Unreliable environ-
ment distribution functions therefore describe the probabil-
ity of reaching an environment as a result of a fault.

The unreliable environment distribution ϕ′ is specified
pointwise: ϕ′(ε′u) is the probability that the unreliable exe-
cution of the statement s results in the environment ε′u given
the distribution on possible starting environments, ϕ, and the
aggregate probability of reaching ε′u from any starting envi-
ronment εu ∈ E according to the big-step aggregate seman-
tics. We note that, in general, ϕ′ is a subprobability measure,
i.e. Σε′uϕ

′(ε′u) ≤ 1, since the big-step aggregate semantics
(Definition 2) enumerates only over terminating traces.

4.2 Reliability Predicates and Transformers
The paired execution semantics enables us to define the se-
mantics of statements as transformers on reliability predi-
cates that bound the reliability of program variables. A reli-
ability predicate P is a predicate of the form:

P → true | false | R∗ ≤ R∗ | P ∧ P
R∗ → r | A | R(X) | R∗ ·R∗

A predicate can either be the constant true, the constant
false, a comparison between reliability factors (Rf), or a
conjunction of predicates.

Reliability Factors. A reliability factor is real-valued
quantity of one of the following forms:

• Constant. A real-valued constant r in the range [0, 1].
• Reliability Variable. A reliability variable A ∈ RVar is

a real-valued variable with a value in the range [0, 1].
• Joint Reliability. A joint reliability R(X) is the prob-

ability that all program variables in the set X have the
same value in the unreliable execution as they have in the
reliable execution.
• Multiplication. A product of reliability factors.

This combination of predicates and reliability factors en-
ables us to specify bounds on the reliability of variables in
the program, such as 0.99999 ≤ R({x}), which states the
probability that x has the correct value in an unreliable exe-
cution is at least 0.99999.

4.2.1 Semantics of Reliability Predicates.
Figure 7 presents the denotational semantics of reliability
predicates via the semantic function JP K. The denotation of

a reliability predicate is the set of tuples – which each consist
of a reliability state, an environment, and unreliable environ-
ment distribution – that satisfy the predicate. A reliability
state ν ∈ N = RVar→ [0, 1] is a finite map from reliability
variables to their values.

We elide a discussion of the semantics of reliability predi-
cates themselves because they are standard and instead focus
on the semantics of reliability factors.

Constants and Reliability Variables. The denotation of a
reliability constant r is the constant itself. The denotation of
a reliability variable A is its value within the reliability state
ν – i.e, ν(A).

Joint Reliability. The joint reliability R(X) is the prob-
ability that the values of the variables in X in the reliable
environment ε are the same as the values of these variables
in an unreliable environment εu sampled from the unreli-
able environment distribution ϕ. We use the helper function
rel(X, ε, ϕ, U) to define this probability.

The function rel(X, ε, ϕ, U) gives a lower bound on the
probability that the values of the variables in X in the reli-
able environment ε are the same as those in an unreliable en-
vironment εu sampled from the distribution ϕ, subject to the
restriction that εu ∈ U (where U ⊆ E). The function rel(·)
is defined inductively on the set of variables X . In the base
case when X is the empty set, rel(∅, ε, ϕ, U) computes the
probability of observing the set of unreliable environments
U given the distribution ϕ. Because ϕ is a probability mass
function, this probability is equal to

∑
εu∈U ϕ(εu).

If X is non-empty, then we define rel(·) by selecting a
variable from X , restricting the set of environments U such
that the remaining environments have the same value for that
variable, and then recursing on the remaining variables in X
with the new restricted set of environments. There are two
cases we must consider when we select a variable from X:

• Scalar Variable. We define the predicate equiv(ε′, ε, x, i)
which is true if and only if ε′ and ε have the same value
at the location obtained by adding i to the base address
of x. We define rel({x} ∪X, ε, ϕ, U) for scalar variables
recursively by using the predicate equiv to construct a
new set of environments U ′ such that U ′ ⊆ U and all
environments in U ′ have the same value for x as in the
reliable environment ε.
• Array Variable. We first define the function len(a, ε)

which computes the length of the array a given its dimen-
sion descriptor in ε. For an array variable a, we define
rel({a} ∪X, ε, ϕ, U) recursively by taking the minimum
over all indices of a of the probability that the value at
that index (along with the values of the remaining vari-
ables in X) have the same value. The definition accom-
plishes this by using a set construction that is similar to
the scalar case.

JP K ∈ P(N× E× Φ) JtrueK = N× E× Φ JfalseK = ∅ JP1 ∧ P2K = JP1K ∩ JP2K
JR∗1 ≤ R∗2K = {〈ν, ε, ϕ〉 | JR∗1K(ν, ε, ϕ) ≤ JR∗2K(ν, ε, ϕ)}

JR∗K ∈ N×E×Φ→ R JrK(ν, ε, ϕ) = r JAK(ν, ε, ϕ) = ν(A) JR∗1 ·R∗2K(ν, ε, ϕ) = JR∗1K(ν, ε, ϕ) · JR∗2K(ν, ε, ϕ)

JR(X)K(ν, ε, ϕ) = rel(X, ε, ϕ, U) rel ∈ P(Var + ArrVar)× E× Φ× P(E)→ [0, 1]

rel(∅, ε, ϕ, U) =
∑
εu∈U

ϕ(εu) rel({x} ∪X, ε, ϕ, U) = rel(X, ε, ϕ, {ε′ | ε′ ∈ U ∧ equiv(ε′, ε, x, 0)})

rel({a} ∪X, ε, ϕ, U) = min
0≤i<len(a,ε)

rel(X, ε, ϕ, {ε′ | ε′ ∈ U ∧ equiv(ε′, ε, a, i)})

equiv(ε′, ε, x, i) = πheap(ε′)(πbase(πframe(ε′)(x)) + i) = πheap(ε)(πbase(πframe(ε)(x)) + i)

Figure 7: Predicate Semantics

This definition of the reliability of an array variable is
suitable for representing results of reading to and writing
from a single element of an array while abstracting away
the specific index of an element. Any array element a[i] that
a computation accesses has a reliability that is greater than
or equal toR(a).

We can also use this definition of the reliability of an ar-
ray variable to recover the reliability of the full contents of
the array – i.e., the probability that all array elements have
the same value in the reliable and the unreliable execution.
Given R(a) and the length of the array n = len(a, ε), a
lower bound on this probability is max{1−n(1−R(a)), 0}.
This result follows by applying the probabilistic union bound
– since the probability that a single array element is unreli-
able is 1 − R(a), the probability that any of n array ele-
ments are unreliable is bounded from above by min{n(1 −
R(a)), 1}. Then the probability that all array elements are
reliable is bounded from below by the complement of the
previous bound.

4.2.2 Reliability Transformer
Given a semantics for predicates, we can now view the
paired execution of a program as a reliability transformer
– namely, a transformer on reliability predicates that is rem-
iniscent of Dijkstra’s Predicate Transformer Semantics [17].

Definition 4 (Reliability Transformer).
ν, ψ |= {P} s {P ′} ≡
∀ε.∀ϕ.∀ε′.∀ϕ′. (〈ν, ε, ϕ〉 ∈ JP K∧〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉)⇒
〈ν, ε′, ϕ′〉 ∈ JP ′K

The paired execution of a statement s is a transformer
on reliability predicates, denoted ν, ψ |= {P} s {P ′}.
Specifically, the paired execution of s transforms P to P ′

if for all 〈ν, ε, ϕ〉 that satisfy P and for all 〈ε′, ϕ′〉 yielded
by the paired execution of s from 〈ε, ϕ〉, 〈ν, ε′, ϕ′〉 satisfies

P ′. The paired execution of s transforms P to P ′ for any P
and P ′ where this relationship holds.

Reliability predicates and the semantics of the reliability
transformer allow us to use symbolic predicates to charac-
terize and constrain the shape of the unreliable environment
distributions before and after execution of a statement. This
semantic approach provides a well-defined domain in which
to express Rely’s reliability analysis as a generator of con-
straints on the shape of the unreliable environment distribu-
tion after execution of the function.

5. Reliability Analysis
For each function in a program, Rely’s reliability analysis
generates a symbolic reliability constraint with a weakest-
preconditions style analysis. The reliability constraint is a re-
liability predicate that constrains the set of specifications that
are valid for the function. Specifically, the reliability con-
straint is a predicate of the form

∧
i,j

Ai ≤ R∗j where the reli-

ability variable Ai is a placeholder for a developer-provided
specification of a function output and R∗j is a reliability fac-
tor that gives a conservative lower bound on the reliability
of that output. If the reliability constraint is valid after an
appropriate substitution of the developer-provided specifica-
tions for each Ai, then the specifications are valid for the
function.

5.1 Design
The following design points reflect some of the core chal-
lenges in developing Rely’s reliability analysis.

Reliability Approximation. The analysis generates con-
straints according to a conservative approximation of the
paired execution semantics. Specifically, it characterizes the
reliability of a value in a function according to the proba-
bility that the function computes that value – including its
dependencies – fully reliably given a hardware specification.

Control Flow. Faults during the unreliable execution of a
program can also affect the path that a control flow branch
takes relative to a reliable execution of a program. In par-
ticular, if the condition of an if statement is incorrect, then
an unreliable execution may take a different branch from the
reliable execution. The analysis incorporates the effect of un-
reliable control flow on the reliability of a variable modified
within an if statement by including in the variable’s reliabil-
ity analysis a dependence on the reliability of the statement’s
control flow variable (Section 3.4). The reliability of an if
statement’s control flow variable is equal to the reliability of
the statement’s condition expression.

Loops. The reliability of a variable that has a loop-carried
dependence and is unreliably modified within a loop is a
monotonically decreasing function of the number of loop
iterations. Because variables unreliably modified within an
unbounded while can be – dynamically – modified an arbi-
trary number of times, our analysis first checks if the loop
condition and the variables modified within the loop are
computed reliably, and if not it sets the reliability of the val-
ues modified within an unbounded while loop to zero. In
contrast, because bounded while loops have a compile-time
bound on the maximum number of iterations, our analysis
uses this bound to unroll the loop and compute a more pre-
cise reliability.

Arrays. We have defined the semantics of the reliability
of an array (Section 4.2.1) to be similar to that of a set: the
reliability of the array is the reliability of the least reliable
element in the array. Our analysis of array operations there-
fore conservatively assumes that each array read accesses the
array element with the minimum reliability and conversely,
each array write decreases the reliability of the element that
previously had the minimum reliability.

5.2 Constraint Generation
Figure 8 presents a selection of Rely’s reliability constraint
generation rules in a weakest precondition style. The gen-
erator takes as input a statement s, a predicate Q, a set of
control flow variables C, and (implicitly) the maps Λ and Γ.
The generator produces as output a predicate P , such that if
P holds before the paired execution of s, then Q holds after.

We have crafted the analysis so that Q is the constraint
over the developer-provided specifications that must hold at
the end of execution of a function. Because arrays are passed
by reference in Rely and can therefore be modified, one
property that must hold at the end of execution of a function
is that each array must be at least as reliable as that implied
by its specification. Our analysis captures this property by
setting the initial Q for the body of a function to∧

ai∈params(f)

Ai ≤ R(ai)

where Ai is the reliability variable that holds the place of
the developer-provided specification for the array ai. This

constraint therefore states that the reliability implied by the
specifications must be less than or equal to the actual re-
liability of each input array at the end of the function. As
the constraint generator works backwards through the pro-
gram in a weakest-preconditions style, it generates a new
constraint that – if valid at the beginning of the program –
ensures that this initial Q true.

5.2.1 Preliminaries
Auxiliary Maps. The map Λ is a map from program vari-
ables to their declared memory regions. We compute this
map by inspecting the parameter and variable declarations
in the function.

The map Γ is a unique map from the observable outputs
of a function – namely, the return value and arrays passed
as parameters – to reliability variables (Section 4.2). Specif-
ically, for each observable output of a function we allocate a
unique reliability variable and store that mapping within Γ.

Substitution. A substitution e0[e2/e1] replaces all occur-
rences of the expression e1 with the expression e2 within the
expression e0. Multiple substitution operations are applied
from left to right. The substitution matches set patterns. For
instance, the pattern R({x} ∪ X) represents a joint relia-
bility factor that contains the variable x, alongside with the
remaining variables in the set X . Then, the result of the sub-
stitution c · R({x, z})[d · R({y} ∪X)/R({x} ∪X)] is the
expression c · d · R({y, z}).

A parameterized substitution e0[e2/e1 : x ∈ X] takes a
set of literals X . The parameter x is a name that e1 and e2
can reference. For a single literal x′ ∈ X the substitution
binds the name x to x′ in e1 and e2, producing expressions
e′1 = e1[x′/x] and e′2 = e2[x′/x], and then performs the
basic substitution e0[e′2/e

′
1]. The parameterized substitution

chains |X| basic substitutions, one for each element of X .
The order of basic substitutions is non-deterministic.

5.2.2 Reasoning about Expressions
The topmost part of Figure 8 first presents our rules for rea-
soning about the reliability of evaluating an expression. The
reliability of evaluating an expression depends on two fac-
tors: 1) the reliability of the operations in the expression and
2) the reliability of the variables referenced in the expres-
sion. The function ρ ∈ (Exp +BExp)→ R×P(Var) com-
putes the core components of these two factors. It returns a
pair consisting of 1) the probability of correctly executing all
operations in the expression and 2) the set of variables ref-
erenced by the expression. The projections ρ1 and ρ2 return
each component, respectively. Using these projections, the
reliability of an expression e – given any reliable environ-
ment and unreliable environment distribution – is therefore
at least ρ1(e) · R(ρ2(e)), where R(ρ2(e)) is the joint relia-
bility of all the variables referenced in e.2

2 The rules for boolean and relational operations (which we elide) are
defined analogously.

ρ ∈ (Exp + BExp)→ R× P(Var) ρ(n) = (1,∅) ρ(x) = (ψ(rd(Λ(x))), {x})

ρ(e1 iop e2) = (ρ1(e1) · ρ1(e2) · ψ(iop) , ρ2(e1) ∪ ρ2(e2)) ρ1(e) = π1(ρ(e)) ρ2(e) = π2(ρ(e))

RCψ ∈ S × P × L → P
RCψ(return e,Q,∅) = Q ∧ Γ(f) ≤ ρ1(e) · R(ρ2(e))

RCψ(x = e,Q,C) = Q [(ψ(wr(Λ(x)) · ρ1(e) · R(ρ2(e) ∪ C ∪X))/R({x} ∪X)]

RCψ(x = a[e1, . . . , en], Q,C) = Q [ψ(wr(Λ(x))) · ψ(rd(Λ(a))) ·∏
i

ρ1(ei) · R({a} ∪ (
⋃
i

ρ2(ei)) ∪ C ∪X)/R({x} ∪X)]

RCψ(a[e1, . . . , en] = e,Q,C) = Q ∧Q [ψ(wr(Λ(a))) ·∏
i

ρ1(ei) · R(
⋃
i

ρ2(ei) ∪ C ∪X))/R({a} ∪X)]

RCψ(skip, Q,C) = Q
RCψ(s1 ; s2, Q,C) = RCψ(s1,RCψ(s2, Q,C), C)

RCψ(if` b s1 s2, Q,C) = (RCψ(s1, Q,C ∪ {`}) ∧ RCψ(s2, Q,C ∪ {`}))
[R({m, `} ∪X)/R({m} ∪X) : m ∈ modset(s1) ∪modset(s2)]
[ρ1(b) · R(ρ2(b) ∪X)/R({`} ∪X)]

RCψ(while` b s,Q,C) = (RCψ(s,Q,C ∪ {`})) [0/R({`} ∪X)]
RCψ(while` b : 0 s,Q,C) = Q
RCψ(while` b : n s,Q,C) = RCψ(if` b {s ; while` b : (n− 1) s} skip, Q,C)

RCψ(int x = e inm,Q,∅) = RCψ(x = e,Q,∅)
RCψ(int a[n0, . . . , nk] inm,Q,∅) = Q [R(X)/R({a} ∪X)]

Figure 8: Reliability Constraint Generation

5.2.3 Generation Rules for Statements
We next present the constraint generation rules for Rely
statements. As in a weakest-precondition generator, the gen-
erator works backwards from the end of the program towards
the beginning. We have therefore structured our discussion
of the statements starting with function returns.

Function Returns. When execution reaches a function re-
turn, return e, the analysis must verify that the reliability
of the return value is greater than that specified by the de-
veloper. To verify this, the analysis rule generates the addi-
tion constraint Γ(f) ≤ ρ1(e) · R(ρ2(e)). This constrains the
reliability of the return value, where Γ(f) is the reliability
variable allocated for the return value of the function.

Assignment. For the program to satisfy a predicateQ after
the execution of an assignment statement x = e, then Q must
hold given a substitution of the reliability of the expression
e for the reliability of x. The substitution Q[(ψ(wr(m)) ·
ρ1(e)·R(ρ2(e)∪X∪C))/R({x}∪X)] binds each reliability
factor in which x occurs – R({x} ∪ X) – and replaces the
factor with a new reliability factorR(ρ2(e)∪X ∪C) where
ρ2(e) is the set of variables referenced by e and C is the set
of current control flow variables. Note that x may have the
wrong value if a fault forced the program to take a different
control path. The analysis accounts for this by incorporating

the reliability of the current control flow variables into the
substituted reliability factor.

The substitution also multiplies the reliability factor by
ρ1(e) · ψ(wr(m)), which is the probability that e evaluates
fully reliably and its value is reliably stored into the memory
location for x.

Array loads and stores. The reliability of a load statement
x = a[e1, . . . , en] depends on the reliability of the indices
e1, . . . , en , the reliability of the values stored in a, and the
reliability of reading from a’s memory region. The rule’s
implementation is similar to that for assignment.

The reliability of an array store a[e1, . . . , en] = e de-
pends on the reliability of evaluating the indices e1, . . . , en
and the reliability of evaluating the source expression e.

Note that the rule for array stores duplicates the predicate
Q and only performs a substitution on one copy of Q. This
duplication corresponds to the two cases that the analysis
must reason about: the minimum reliability of the array is
either the reliability of e – as it is now stored into the array
– or it is the reliability of a previously written element. This
duplication ensures that Q must also hold for all previously
written elements and, specifically, ensures that Q must hold
individually for every write to the array over its lifetime.

Skip and Sequence. The analysis for sequences and skip
statements operates in a standard manner.

Conditional. For an execution of a conditional statement
if` b s1 s2 to satisfy a predicate Q, then execution of each
branch must satisfy Q. The rule implements this by forming
a conjunction of the results of recursive invocations of the
analysis on each branch.

The unreliable execution of a conditional can, in general,
cause the execution to take a wrong branch and affect the
reliability of the variables modified in the loop. The analy-
sis uses control flow variables ` to express the dependence
between the reliability of variables modified in the loop and
the reliability of the condition b. The analysis performs three
steps to represent the effects of unreliable control flow.

Before it analyzes the branches of the conditional, the
analysis adds the conditional’s control flow variable ` to the
set of active control flow variables C. The variables in C are
added to the joint reliability factors in any assignment within
the conditional, reflecting the fact that the reliability of the
assignment depends on the reliability of the conditional tak-
ing the correct branch.

After it computes the reliability predicates for the branches
s1 and s2, the analysis additionally marks the reliability fac-
tors of variables that are modified only in a single branch.
The function modset(s) produces the set of variables that
can be modified by the statement s (including modifications
by any nested conditionals, loops, or function calls). The
substitution appends the label ` to reliability factors that con-
tain any variable from the set of variables modified within
any of the branches.

As a final step, the analysis substitutes the reliability of
the conditional’s boolean expression for the reliability of its
control flow variable.

Bounded while and repeat. Bounded while loops,
while` b : n s, and repeat loops, repeat n s, execute
their bodies at most n times. Execution of such a loop there-
fore satisfies Q only if P holds beforehand, where P is the
result of invoking the analysis on n sequential copies of the
body. The rule implements this approach via a sequence of
bounded recursive calls to itself.

Unbounded while. For clarity of presentation, we present
our analysis for unbounded while loops in Section 5.2.4.

Declarations. The analysis handles declarations in a simi-
lar way to assignments. The primary departure is that decla-
rations do not occur under control flow constructs and, there-
fore, the current control flow variables need not be incorpo-
rated in to the analysis of these statements.

Function calls. We present the rule for function calls in the
Appendix for clarity of presentation. In short, the analysis
takes the reliability specification from the function declara-
tion and substitutes the reliabilities of the function’s formal
arguments with the reliabilities of the expressions that rep-
resent the corresponding actual arguments of the function.

5.2.4 Unbounded while Loops
An unbounded loop, while` b s, may execute for a num-
ber of iterations that is not bounded statically. The reliability
of a variable that is modified unreliably within a loop and
has a loop-carried dependence is a monotonically decreas-
ing function of the number of loop iterations. A sound ap-
proximation of the reliability of such a variable is therefore
zero. However, unbounded loops may also update a variable
reliably. In this case, the reliability of the variable is the
joint reliability of its dependencies. We have implemented
our analysis for unbounded while loops to distinguish these
two cases as follows:

Dependence Graph. Our analysis first constructs a depen-
dence graph for the loop. Each node in the dependence graph
corresponds to a variable that is read or written within the
condition or body of the loop. There is a directed edge from
the node for a variable x to the node for a variable y if the
value of y depends on the value of x. We additionally clas-
sify each edge as reliable or unreliable meaning that an reli-
able or unreliable operation creates the dependence.

There is an edge from the node for a variable x to the
node for the variable y if one of the following holds:

• Assignment: there is an assignment to y where x occurs
in the expression on the right hand side of the assign-
ment; this condition captures direct data dependencies.
We classify such an edge as reliable if every operation in
the assignment (i.e., the operations in the expression and
the write to memory itself) are reliable. Otherwise, we
mark the edge as unreliable.
• Control Flow: y is assigned within an if statement

and the if statement’s control flow variable is named x;
this condition captures control dependencies. We classify
each such edge as reliable.
• Conditional: an if statement’s control flow variable is

named y and x occurs within the statement’s conditional
expression; this condition captures the dependence of the
control flow variable on the conditional’s expression. We
classify such an edge as reliable if every operation in the
conditional’s expression is reliable. Otherwise, we mark
the edge as unreliable.

The analysis uses the dependence graph to identify the set
of variables in the loop that are reliably updated. A variable
x is reliably updated if all paths to x in the dependence graph
contain only reliable edges.

Fixpoint Analysis. Given a set of reliable variables Xr,
the analysis next splits the current constraint Q into two
parts. For each predicate A ≤ r · R(X) in Q, the analysis
checks if the property ∀x ∈ X.x 6∈ modset(s) ⇒ x ∈ Xr

holds. If this holds, then all the variables in X are either
modified reliably or not modified at all within the body of the
loop. The analysis conjoins the set of predicates that satisfy

this property to create the constraint Qr and conjoins the
remaining predicates to create the constraint Qu.

The analysis next takes the constraint Qr and iterates
the function RCψ(` = b ; s,Qr, C ∪ {`}) until it reaches a
fixpoint. The predicate Q′r that results from this translates
Qr to constrain the set of valid specifications using the
dependencies of each variable that occurs in Qr.

Lemma 1 (Termination). Iteration of the function
RCψ(` = b ; s,Qr, C ∪ {`}) terminates if each variable in
each predicate of Qr is updated reliably or not updated at
all.

Final Constraint. In the last step, the analysis produces
its final constraint by conjoining Q′r with the predicate
Qu[0/R({x} ∪ X) : x ∈ modset(s)], where the second
predicate sets the reliability of variables that are updated
unreliably to zero.

Using the dependence graph, our analysis sets the relia-
bility to zero of only those variables that are updated unreli-
ably within a loop. For reliably updated variables, the analy-
sis computes their reliability to be at least as reliable as their
dependencies on entry to the loop.

5.2.5 Properties
Rely’s reliability analysis is sound with respect to the trans-
former semantics laid out in Section 4.

Theorem 1 (Soundness). ν, ψ |= {RCψ(s,Q, ∅)} s {Q}
This theorem property states that if an environment ε

and unreliable environment distribution ϕ satisfy a gener-
ated constraint and the paired execution of s yields an en-
vironment ε′ and an unreliable environment distribution ϕ′,
then ε′ and ϕ′ satisfy Q. Alternatively, s transforms the con-
straint generated by our analysis to Q. We present a proof
sketch for this theorem in the Appendix.

5.3 Specification Checking
As the last step of the analysis for a function, the analysis
checks the developer-provided reliability specifications for
the function’s outputs against the constraint produced by the
constraint generator. The analysis substitutes each reliabil-
ity variable Γ(·) with the corresponding reliability specifica-
tion. Each specification has the form r · R(X) (Figure 1).
After substitution, the constraint is therefore a conjunction
of predicates of the form

r1 · R(X1) ≤ r2 · R(X2)

A set of developer-provided specifications is therefore valid
if the predicate is valid after substituting each reliability vari-
able with the reliability specification the developer provided
for that variable’s associated function output.

A useful property for solving these inequalities is the
ordering of reliability factors.

Proposition 1 (Ordering). For two sets of variables X and
Y , if X ⊆ Y thenR(Y) ≤ R(X).

As a consequence of ordering of reliability factors, we
can directly check the validity of each predicate in a con-
straint.

Corollary 1 (Predicate Validity). If r1 ≤ r2 and X2 ⊆ X1

then r1 · R(X1) ≤ r2 · R(X2).

The constraint r1 ≤ r2 is a comparison of two real num-
bers and the constraintX2 ⊆ X1 is an inclusion of finite sets.
Note that both types of constraints are decidable and can be
checked efficiently. In addition, because the predicates are
mutually independent, we can check the validity of the con-
straint as a whole by checking the validity of each predicate
in turn.

5.4 Implementation
We implemented the parser for the Rely language, the con-
straint generator, and the constraint checker in OCaml. The
implementation consists of 2500 lines of code. The analysis
can operate on numerical or symbolic hardware reliability
specifications. Our implemented analysis performs simplifi-
cation transformations after every constraint generator step
to identify and remove duplicates and trivially satisfied con-
straints.

Simplification. Simplification removes redundant con-
straints and simplifies numerical expressions for individual
constraints. It helps minimize the overall size of the reliabil-
ity predicates.

Proposition 2 (Redundant Constraints). Let a predicate P
be a conjunction of reliability constraints. A reliability con-
straint r1 · R(X1) ≤ r2 · R(X2) in P is redundant if 1)
P contains another constraint r1 · R(X1) ≤ r′2 · R(X ′2)
such that r′2 · R(X ′2) ≤ r2 · R(X2) or 2) P contains
another constraint r′1 · R(X ′1) ≤ r2 · R(X2) such that
r1 · R(X1) ≤ r′1 · R(X ′1).

6. Case Studies
We next discuss six computations (three checkable, three ap-
proximate) that we implemented in Rely and analyzed using
Rely’s analysis. For the verification of the benchmarks we
use the hardware reliability specification from Figure 3. We
describe the summary of the analysis for the implementation
and present two additional case studies on how a developer
can write the reliability specifications.

6.1 Analysis Summary
Table 9 presents the benchmarks and the analysis results.
For each benchmark we present the type of the computation
(checkable or approximate), the number of lines of code, the
time of the analysis and the number of inequality predicates
in the function-level constraint before it is passed to the
checker.

We analyze the following six computations:

• newton: This computation searches for a root of a uni-
variate function using Newton’s Method.

Benchmark Type LOC Time (ms) Predicates
newton Checkable 21 8 1
secant Checkable 30 7 2
coord Checkable 36 19 1
search ref Approximate 37 348 3
matvec Approximate 32 110 4
hadamard Approximate 87 18 3

Figure 9: Benchmark Analysis Summary

• secant: This computation also searches for a root of a
univariate function, but using the Secant Method.
• coord: This computation calculates the Cartesian coordi-

nates from the polar coordinates passed as the input.
• search ref: This computation performs a simple motion

estimation. We presented this computation in Section 2.
• mat vec: This computation multiplies a matrix and a

vector and stores the result in another vector.
• hadamard: This computation takes as input two blocks

of 4x4 pixels and computes the sum of differences be-
tween the pixels in the frequency domain.

We provide a detailed description of the benchmarks in the
Appendix. For each computation we provide the source code
and the corresponding reliability specification – a bound on
the reliability of the output given the reliability of the inputs
of the computation.

Running on an Intel Xeon E5520 machine with 16 GB of
main memory, the analysis times are under one second for
all benchmarks. For each computation the constraint checker
verifies that the specification of the output reliability of the
computation is satisfied given the hardware reliability spec-
ification in Figure 3. We note that the use of the simplifi-
cation procedure that removes redundant predicates during
the evaluation significantly reduces the number of final con-
straints. In particular, it identifies that most of the constraints
generated for conditional statements (as in the secant bench-
mark) and array update statements (as in the matvec bench-
mark) are redundant, and therefore can be suppressed imme-
diately after analyzing the statement.

6.2 Reliability and Accuracy
The developer writes the reliability specifications of compu-
tations. His or her choice of a tolerable reliability bound is
typically influenced by the perceived effect that the unreli-
able execution of the computation may have on the accuracy
of the result and the execution time and energy consumption
of the computation.

We present two case studies that relate the tolerable relia-
bility of computations to the accuracy of the results that the
computations produce.

6.2.1 Checkable Computations
Newton’s Method. This computation searches for a root
of a function: given a differentiable function f(x), its deriva-

tive f ′(x) and a starting point xs, it computes a value x0 such
that f(x0) = 0. The reliability of the output of the compu-
tation is therefore c · R(xs), where c a tolerable reliability
degradation that the developer sets.

Figure 10 presents the implementation of this computa-
tion. This is an example of a fixed point computation. The
computation within each iteration of the method can execute
unreliably: each iteration updates the estimate of the root x
by computing the value of the function f and the derivative
f ′. If the computation converges in the maximum number
of steps, the function returns the correct value. Otherwise it
returns the error value (infinity). The reliability of the com-
putation depends on the reliability of the starting value xs
and the reliability of the functions f and f ′. If the reliability
specification of f is float<0.9999*R(x)> F(float x)
(and similar for f ′), then the analysis verifies that the reli-
ability of the whole computation is at least 0.99*R(xs).

i

1 #define tolerance 0.000001

2 #define maxsteps 40

3
4 float <0.9999*R(x)> F(float x in urel);

5
6 float <0.9999*R(x)> dF(float x in urel);

7
8 float <0.99*R(xs)> newton(float xs in urel){

9 float x in urel;

10 float xprim in urel;

11 float t1 in urel;

12 float t2 in urel;

13
14 x = xs;

15 xprim = xs +. 2*. tolerance;

16
17 while ((x -. xprim >=. tolerance)

18 ||. (x -. xprim <=. -tolerance)

19) : maxsteps {

20 xprim = x;

21 t1 = F(x);

22 t2 = dF(x);

23 x = x -. t1 /. t2;

24 }

25
26 if ((x -. xprim <=. tolerance)

27 &&. (x -. xprim >=. -tolerance))

28 {

29 return x;

30 } else {

31 return INFTY;

32 }

33 }

Figure 10: Newton’s Method Implementation

Checker. To check the reliability of the root x0 that the
computation produces, it is enough to evaluate the function
f(x0). The expected result of this evaluation should be equal
to zero. In our analysis, the time to execute the checker is
equal to a half of the time of a single iteration of Newton’s
method.

Reexecution. If the evaluation of the checker does not pro-
duce the expected value, the computation executes the fully
reliable implementation of Newton’s Method. The imple-
mentation of this checked computation is:

float root = newton_u (xs);

float ezero = f(root);

if (ezero < -tolerance || ezero > tolerance)

root = newton_r (xs);

The function newton_u is the potentially unreliable imple-
mentation of the computation. If the checker detects an er-
ror, the computation calls newton_r, the fully reliable im-
plementation of the computation. As we discussed earlier,
the reliability of a computation can be ensured using both
software (replication) or hardware (changing the operational
mode) techniques.

Reliability/Execution Time Tradeoff. Let τr be the ex-
pected execution time of a Newton’s method computation
executing on reliable hardware, τu the expected execution
time of the computation executing on unreliable hardware,
τum the expected execution time of the computation that ex-
ecutes a maximum number of iterations (for this computa-
tion 40) on unreliable hardware, and τc the expected exe-
cution time of the checker.3 Furthermore, let use denote the
projected speedup as s and the target reliability of the func-
tion newton as r.

The expected execution time of the computation when
it produces a correct result is T1 = τu + τc, since it does
not execute the if branch. The expected execution time of
the computation when it executes on unreliable hardware is
T2 ≤ τum + τc + τr, since it executes the if branch. This
analysis conservatively assumes that the soft errors always
cause the computation to execute the maximum number of
iterations, hence the upper bound τum on the execution time.
The total expected execution time of the previous code block
executed on unreliable hardware is then

T ′ = r · T1 + (1− r) · T2

Finally, the expected execution time of the reliable com-
putation τr and T ′ are related via s = τr/T

′. These analytic
expressions allow the developer to estimate the expected re-
source usage improvement given a particular value of the
target reliability r or vice versa.

Numerical Example. As an illustration, we now provide
a numerical example of calculating the expected execution
time. Let τr = 1.4τu, assuming that the computation ex-
ecutes on unreliable hardware and the reliable computation
uses the software level replication. We take the average over-
head of replication reported in [38]. Furthermore, let the reli-
able Newton’s method computation converge on average in
a half of the maximum number of steps (i.e., τum = 2τu)
and the maximum number of iterations is 40.
3 The analysis can be analogously applied for an alternative resource usage
measure such as energy consumption

If the developer’s projected speedup is 1.32, he or she
can compute the corresponding reliability r = 0.99 from
the previous formulas. Rely can verify that the computation
satisfies this target reliability given the hardware reliability
specification from Figure 3.

6.2.2 Approximate Computations
Sum of transformed differences. The motion estimation
benchmark presented in Section 2 consists of a fitness func-
tion that determines the similarity of each block of pixels
in the array pblocks to the block cblock and a compari-
son function that finds the element with the minimum fitness
function. The fitness function in this computation is the sum
of squared pixel distances (Figure 2, Lines 17-32). Another
commonly used fitness function is the sum of pixel differ-
ences in the frequency domain. Hadamard benchmark is the
main building block of this fitness function [54].

The function has the following signature:

int <0.99995 * R(bA , bB, satdstart)>

hadamard (int <R(bA)> bA(2) in urel ,

int <R(bB)> bB(2) in urel ,

int satdstart in urel)

This computation takes as input two two-dimensional arrays
bA and bB that represent the pixel blocks and the variable
satdstart, which is the offset on the return value. The
computation is a sequence of arithmetic operations on the
array elements. In this case the analysis verifies the overall
reliability degradation of 0.99995 relative to the reliability
of the input parameters. We present the full source code of
the computation in the Appendix.

The errors in this computation may, in general, affect
properties of the computation related to 1) integrity and
2) accuracy of the computation. The integrity properties
of a computation [10] encompass internal properties of a
computation, that ensure that the execution of a computation
does not lead to unexpected execution termination or latent
memory errors, and external properties, that specify the form
and legal results that the computation can produce.

If the computation satisfies the integrity properties, any
output returned by the unreliable computation affects only
accuracy of the final output of a program that uses this
computation.

Integrity. For the sum of absolute transformed differences
the integrity property requires that the result of the function
is a non-negative number [10]. If the integrity check fails,
the Hadamard computation needs to be reexecuted reliably
(as for the checkable computations). However, the developer
may consider that the probability of this event is negligible
and would not impact the expected execution time. In this
case, the developer may approximate the execution time of
the checked computation on the unreliable hardware as the
time without overhead for checking and re-execution.

Accuracy. As with the approximate computation from
Section 2, previous research [15, 32] demonstrates that the
result of the computation is only slightly affected by modi-
fications of the computation. Loop perforation experiments
demonstrate that video encoders produce an acceptable re-
sult even if the fitness function skips half of the pixels [32].
In contrast, a developer’s specification that the reliability of
the computation degrades by a factor c from the reliability
of the inputs indicates the developer’s expectation that the
computation may fail to produce the exact result only in a
small fraction of executions.

To determine the tolerable degradation factor c, the de-
veloper may perform end-to-end accuracy experiments (such
as [15] or [32]), or measure the effect of unreliable execution
on a local accuracy metric of the motion estimation. One lo-
cal accuracy metric is the probability that an index of the best
element that the unreliable execution produce is not among
the top k elements that the reliable execution would produce.
This accuracy metric relies on the fact that even if the com-
putation does not return the best matching block, the next
k − 1 blocks will produce similar results in the remaining
computation.

We finally note that many faults that emerge in the com-
putational pattern that computes a minimum or a maximum
element in a collection (motion estimation is an instance
of this pattern) may not propagate to the rest of the pro-
gram. This includes errors that do not affect the ordering of
the blocks and errors that may change the ordering between
blocks in the pblocks array, but do not affect the position of
the block with the best score. Note that the Rely’s analysis is
conservative in the sense that it assumes that any soft error
will be visible to the outside computation.

7. Related Work
In this section we provide an overview of the previous re-
search related to Rely.

7.1 Critical and Approximate Data
Static Criticality Analyses. Researchers have previously
developed several specification-based static analysis based
approaches that let developer identify and separate critical
and approximate parts of computations. Sampson et al. [47]
present EnerJ, a programming language and an information-
flow type system that allows a developer to partition data
into approximate and critical data and ensures that opera-
tions on approximate data do not affect critical data or mem-
ory safety of programs. Carbin et al. [9] present a verifi-
cation system for nondeterministic relaxed programs based
on relational Hoare logic. The system enables rigorous rea-
soning about relationships between the original and relaxed
programs and captures the worst-case difference and non-
interference properties of relaxed computations. Flikker [29]
is a set of language extensions with runtime and hardware
support to enable more energy efficient execution of pro-

grams on inherently unreliable memories. It allows a devel-
oper to partition data into critical and approximate regions
(but does not enforce full separation between the regions).
Based on these annotations, the Flikker runtime allocates
and stores data in reliable or unreliable DRAM memory.

All of this prior research is designed to work with ap-
proximate computations that (to be acceptable) must pro-
duce correct results most of the time. But it focuses only
on the binary distinction between reliable and approximate
computations and does not address how often the approx-
imate computations produce the correct result. In contrast,
the research presented in this paper provides static proba-
bilistic guarantees about the reliability of computations that
execute on unreliable hardware. Because even approximate
computations must produce the correct result most of the
time, these probabilities are critical to the overall acceptabil-
ity of these computations.

Criticality Testing. Researchers have also explored tech-
niques that identify critical and/or approximate parts of the
computation in existing imperative programs. All these ap-
proaches are dynamic in nature and use representative inputs
to guide the search for critical subcomputations. These tech-
niques are based on program transformations [32, 43], di-
rected input fuzzing [3, 11, 52], and fault injection [28, 46,
53]. Snap [11] fuzzes values of the input fields of multimedia
formats to determine critical subcomputations and critical
input fields (the fields used by critical computations). Qual-
ity of service profiler [32] transforms programs using loop
perforation to identify approximate parts of a computation.

Accuracy Analysis. As a related problem, researchers
have analyzed how the uncertainty in the computation in-
troduced by randomized program transformations or soft
errors affects the accuracy of the final result of the com-
putation. The existing techniques use static probabilistic or
worst-case reasoning [5, 9, 13, 31, 41] or empirical evalua-
tion [1, 2, 15, 23, 28, 29, 32, 43, 44, 50, 53].

7.2 Probabilistic Program Analysis
Kozen’s work [25] was the first to propose the analysis of
probabilistic programs as transformers of discrete probabil-
ity distributions. Researchers have since developed a number
of program analyses for probabilistic programs, including
those based on axiomatic reasoning [4, 5, 34] and abstract
interpretation [14, 16, 33, 51].

The language features that introduce probabilistic nonde-
terminism in programs studied in this previous research in-
clude probabilistic sampling, x = random() [4, 5, 25, 33],
probabilistic choice between statements, s1 ⊕p s2 [14, 16,
34], and specifications of distributions of inputs of the com-
putation [51]. Rely refines the probabilistic operators by
defining a set of unreliable executions and memory accesses
(each of which is a specific probabilistic assignment) that
model faults in the underlying hardware model.

Morgan et al. [34] propose a weakest-precondition style
analysis for probabilistic programs that treats the programs
as expectation transformers. Preconditions and postcondi-
tions are defined as the bounds on probabilities that par-
ticular logical predicates hold at a specified location in
the program. Rely’ analysis, like [34], constructs weakest-
precondition predicates for program statements. In contrast,
Rely’s predicates are relational, over the states of the reliable
and unreliable executions of the program.

Barthe et al. [4, 5] define a probabilistic relational Hoare
logic for a simple probabilistic imperative language using a
denotational, monadic-style semantics. The relational pred-
icates are arbitrary conjunctions or disjunctions of relational
expressions over program variables, each of which is en-
dowed with a probability of being true. These techniques re-
quire manual proofs or an SMT solver to verify the validity
of predicates. In comparison, Rely presents an operational
semantics for an imperative language and a semantics of re-
liability predicates based on the notion of a paired program
execution as a foundation for the quantitative reliability anal-
ysis. Rely defines special joint reliability factors to simplify
the construction and checking of the reliability predicates.

7.3 Fault Tolerance and Resilience
Researchers have developed various software-based, hard-
ware based, or mixed-mode approaches for detection and re-
covery from soft errors.

Reis et al. [42] present a compiler based approach that
replicates parts of the computation to detect and recover
from single event upset errors. Perry et al. [38] present a
fault tolerance-aware assembly language and type system
that reasons about placement of replicated instructions in
a way that they do not interfere with the original data or
control-flow. They later extended this research to handle
control flow errors [39]. These approaches typically apply
replication transformations to the entire computation. Our
technique allows for reasoning about selective placement of
software fault tolerant mechanisms for data-based soft errors
via reliability specifications and critical execution blocks.

De Kruijf et al. [15] present a language, compiler and a
hardware architecture that can detect certain classes of soft
errors and execute developer specified recovery routines if
errors happen within a computation. Feng et al. [21] present
a compiler that extends with fault tolerant code only some
of the subcomputations, selected automatically by the com-
piler. Samurai [36] uses replication to protect critical data
(selected by a developer) that resides in unreliable mem-
ory. Yarra [48] provides a set of annotations for specify-
ing critical data and combines static analysis and dynamic
checks to protect critical data from arbitrary (potentially ma-
licious) reads or writes. Researchers have also developed
techniques for determining a set of locations in a program
where detectors for numerical and memory errors should be
placed [22, 53]. While these techniques provide a means to
specify critical code or memory blocks, they do not specify

or reason about the quantitative reliability of the values that
the computation operates on.

Researchers have also proposed frameworks and systems
that recover a program’s execution that experienced fault
without the help of prior developer’s annotations [24, 37,
45]. These recovery mechanisms demonstrate the potential
to help the application produce the acceptable output despite
the experienced fault.

7.4 Emerging Hardware Architectures
Recently researchers have proposed multiple hardware ar-
chitectures to trade reliability for additional energy or perfor-
mance savings. Some of the recent research efforts include
probabilistic CMOS chips [12], stochastic processors [35],
error resilient architecture [26], and the Truffle architec-
ture [19]. These techniques use voltage scaling, at different
granularity, to save energy of the system at the expense of
the accuracy of the results. The researchers demonstrate that
for specific classes of applications, such as multimedia pro-
cessing and machine learning, the obtained tradeoffs may be
profitable to the user. Our approach aims to help developers
better understand and control the behavior of their applica-
tions on such architectures.

8. Conclusion
Driven by hardware technology trends, future computational
platforms are projected to contain unreliable hardware com-
ponents. To safely exploit the benefits (such as reduced en-
ergy consumption) that such unreliable components may
provide, developers need to understand the effect that these
components may have on the overall reliability of the ap-
proximate computations that execute on them.

We present a language, Rely, for exploiting unreliable
hardware and an associated analysis that provides proba-
bilistic reliability guarantees for Rely computations execut-
ing on unreliable hardware. By enabling developers to better
understand the probabilities with which this hardware en-
ables approximate computations to produce correct results,
these guarantees can help developers safely exploit the sig-
nificant benefits that unreliable hardware platforms offer.

Acknowledgements
We thank Hank Hoffmann, Deokhwan Kim, Vladimir Kiri-
ansky, Stelios Sidiroglou, Rishabh Singh, and the anony-
mous referees for the useful comments on the previous ver-
sions of this work.

This research was supported in part by the National
Science Foundation (Grants CCF-0905244, CCF-1036241,
CCF-1138967, CCF-1138967, and IIS-0835652), the United
States Department of Energy (Grant DE-SC0008923), and
DARPA (Grants FA8650-11-C-7192, FA8750-12-2-0110).

References
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,

A. Edelman, and AmarasingheS. PetaBricks: A language and
compiler for algorithmic choice. PLDI, 2009.

[2] W. Baek and T. M. Chilimbi. Green: A framework for sup-
porting energy-conscious programming using controlled ap-
proximation. PLDI, 2010.

[3] T. Bao, Y. Zheng, and X. Zhang. White box sampling in
uncertain data processing enabled by program analysis. In
OOPSLA, 2012.

[4] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal
certification of code-based cryptographic proofs. POPL, 2009.

[5] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin.
Probabilistic reasoning for differential privacy. POPL, 2012.

[6] M. Blum and S. Kanna. Designing programs that check their
work. STOC, 1989.

[7] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problems. Journal of computer
and system sciences, 1993.

[8] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir. Toward exascale resilience. International Journal
of High Performance Computing Applications, 2009.

[9] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving
acceptability properties of relaxed nondeterministic approxi-
mate programs. PLDI, 2012.

[10] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Verified
integrity properties for safe approximate program transforma-
tions. PEPM, 2013.

[11] M. Carbin and M. Rinard. Automatically identifying critical
input regions and code in applications. ISSTA, 2010.

[12] L. Chakrapani, B. Akgul, S. Cheemalavagu, P. Korkmaz,
K. Palem, and B. Seshasayee. Ultra-efficient (embedded) soc
architectures based on probabilistic cmos (pcmos) technology.
DATE, 2006.

[13] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour.
Proving programs robust. FSE, 2011.

[14] P. Cousot and M. Monerau. Probabilistic abstract interpreta-
tion. ESOP, 2012.

[15] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an
architectural framework for software recovery of hardware
faults. ISCA, 2010.

[16] A. Di Pierro and H. Wiklicky. Concurrent constraint program-
ming: Towards probabilistic abstract interpretation. PPDP,
2000.

[17] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. CACM, 18(8), August 1975.

[18] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
Razor: A low-power pipeline based on circuit-level timing
speculation. MICRO, 2003.

[19] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Ar-
chitecture support for disciplined approximate programming.
ASPLOS, 2012.

[20] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neu-
ral acceleration for general-purpose approximate programs.
MICRO, 2012.

[21] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring:
probabilistic soft error reliability on the cheap. ASPLOS’10.

[22] M. Hiller, A. Jhumka, and N. Suri. On the placement of
software mechanisms for detection of data errors. DSN, 2002.

[23] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for responsive
power-aware computing. ASPLOS, 2011.

[24] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt:
on-demand infinite loop escape in unmodified binaries. OOP-
SLA, 2012.

[25] D. Kozen. Semantics of probabilistic programs. Journal of
Computer and System Sciences, 1981.

[26] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra. Ersa: er-
ror resilient system architecture for probabilistic applications.
DATE, 2010.

[27] N. Leveson, S. Cha, J. C. Knight, and T. Shimeall. The
use of self checks and voting in software error detection: An
empirical study. IEEE Transactions on Software Engineering,
1990.

[28] X. Li and D. Yeung. Application-level correctness and its
impact on fault tolerance. HPCA, 2007.

[29] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker:
saving dram refresh-power through critical data partitioning.
ASPLOS, 2011.

[30] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential
programs with statistical accuracy tests. ACM TECS Special
Issue on Probabilistic Embedded Computing, 2013.

[31] S. Misailovic, D. Roy, and M. Rinard. Probabilistically accu-
rate program transformations. SAS, 2011.

[32] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard.
Quality of service profiling. ICSE, 2010.

[33] D. Monniaux. Abstract interpretation of probabilistic seman-
tics. SAS, 2000.

[34] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate
transformers. TOPLAS, 1996.

[35] S. Narayanan, J. Sartori, R. Kumar, and D. Jones. Scalable
stochastic processors. DATE, 2010.

[36] K. Pattabiraman, V. Grover, and B. Zorn. Samurai: protecting
critical data in unsafe languages. EuroSys, 2008.

[37] J. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sulli-
van, W. Wong, Y. Zibin, M. Ernst, and M. Rinard. Automati-
cally patching errors in deployed software. SOSP, 2009.

[38] F. Perry, L. Mackey, G.A. Reis, J. Ligatti, D.I. August, and
D. Walker. Fault-tolerant typed assembly language. PLDI,
2007.

[39] F. Perry and D. Walker. Reasoning about control flow in the
presence of transient faults. SAS, 2008.

[40] P. Prata and J. Silva. Algorithm based fault tolerance versus
result-checking for matrix computations. FTCS, 1999.

[41] Jason R. and B. Pierce. Distance makes the types grow
stronger: a calculus for differential privacy. ICFP, 2010.

[42] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. Au-
gust. Swift: Software implemented fault tolerance. CGO,
2005.

[43] M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. ICS, 2006.

[44] M. Rinard. Using early phase termination to eliminate load
imbalances at barrier synchronization points. OOPSLA, 2007.

[45] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and
W.S. Beebee Jr. Enhancing server availability and security
through failure-oblivious computing. OSDI, 2004.

[46] M. Rinard, C. Cadar, and H. Nguyen. Exploring the accept-
ability envelope. OOPSLA, 2005.

[47] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. Enerj: Approximate data types
for safe and general low-power computation. PLDI, 2011.

[48] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and
B. Zorn. Yarra: An extension to c for data integrity and partial
safety. CSF, 2011.

[49] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the
soft error rate of combinational logic. DSN, 2002.

[50] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop per-
foration. FSE, 2011.

[51] M. Smith. Probabilistic abstract interpretation of impera-
tive programs using truncated normal distributions. Elec-
tronic Notes in Theoretical Computer Science, 2008.

[52] W. N. Sumner, T. Bao, X. Zhang, and S. Prabhakar. Coalesc-
ing executions for fast uncertainty analysis. In ICSE, 2011.

[53] A. Thomas and K. Pattabiraman. Error detector placement for
soft computation. DSN, 2013.

[54] x264. http://www.videolan.org/x264.html.

[55] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized
accuracy-aware program transformations for efficient approx-
imate computations. POPL, 2012.

