6 research outputs found

    Surface-Mediated Molecular Transport of a Lipophilic Fluorescent Probe in Polydisperse Oil-in-Water Emulsions

    Get PDF
    Emulsions often act as carriers for water-insoluble solutes that are delivered to a specific target. The molecular transport of solutes in emulsions can be facilitated by surfactants and is often limited by diffusion through the continuous phase. We here investigate this transport on a molecular scale by using a lipophilic molecular rotor as a proxy for solutes. Using fluorescence lifetime microscopy we track the transport of these molecules from the continuous phase toward the dispersed phase in polydisperse oil-in-water emulsions. We show that this transport comprises two time scales, which vary significantly with droplet size and surfactant concentration, and, depending on the type of surfactant used, can be limited either by transport across the oil-water interface or by diffusion through the continuous phase. By studying the time-resolved fluorescence of the fluorophore, accompanied by molecular dynamics simulations, we demonstrate how the rate of transport observed on a macroscopic scale can be explained in terms of the local environment that the probe molecules are exposed to.</p

    Viscoelastic properties of suspended cells measured with shear flow deformation cytometry

    Get PDF
    Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 µm wide microfluidic channel. The fluid shear stress induces large, ear ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe [1] that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell-cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks

    Adsorption of a water-soluble molecular rotor fluorescent probe on hydrophobic surfaces

    No full text
    Environmentally sensitive molecular rotors are widely used to probe the local molecular environment in e.g. polymer solutions, polymer glasses, and biological systems. These applications make it important to understand its fluorescence properties in the vicinity of a solid surface, since fluorescence microscopy generically employs cover slides, and measurements are often done in its immediate vicinity. Here, we use a confocal microscope to investigate the fluorescence of (4-daspi) in glycerol/water solutions close to the interface using hydrophilic or hydrophobic cover slips. Despite the dye’s high solubility in water, the observed lengthening of the fluorescence lifetime close to the hydrophobic surface, implies a surprising affinity of the dye with the surface. Because the homogeneous solution and the refractive index mismatch reduces the optical sectioning power of the microscope, we quantify the affinity with the help of a simple model of the signal vs. depth of focus, exhibiting surface and bulk contributions. The model reduces artefacts due to refractive index mismatch, as supported by Monte Carlo ray tracing simulations

    An intelligent simulation platform for train traffic control under disturbance

    Full text link
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. Railway disturbance management is inherently a multi-objective optimization problem that concerns both the operators’ cost and passenger’s service level. This study proposes a multi-objective simulation-based optimization framework to effectively manage the train conflicts after the occurrences of a disturbance caused by a temporary line blockage. The simulation model enhanced with a dynamic priority dispatching rule in order to speed up the optimization procedure. A multi-objective variable neighborhood search meta-heuristic is proposed to solve the train rescheduling model. The obtained Pareto optimal solutions for disturbance management model support the decision maker to find a trade-off between both user and operator viewpoints. The proposed approach has been validated on a set of disruption scenarios covering a large part of the Iranian rail network. The computational results prove that the proposed model can generate good-quality timetables with the minimum passenger delay and deviation from the initial timetable. The outcomes indicate that the developed simulation-based optimization approach has substantial advantages in producing practical solution quickly when compared to currently accepted solutions. Abbreviation: MOVNS: multi-objective variable neighbourhood search; DES: discrete-event simulation; SO: simulation-optimization; AG: Alternative Graph; FCFS: First Come First Served; MIP: mixed integer programming; MILP: mixed-integer linear programming; B&B: branch and bound algorithm; VND: Variable Neighborhood Descent; NSGA-II: Non-dominated Sorting Genetic Algorithm–II; CD: crowding distance; DP: dynamic priority; EDD: earliest due date first; SRTT: shortest remaining traveling time; LST: least slack time first

    Adsorption of a water-soluble molecular rotor fluorescent probe on hydrophobic surfaces

    Get PDF
    Environmentally sensitive molecular rotors are widely used to probe the local molecular environment in e.g. polymer solutions, polymer glasses, and biological systems. These applications make it important to understand its fluorescence properties in the vicinity of a solid surface, since fluorescence microscopy generically employs cover slides, and measurements are often done in its immediate vicinity. Here, we use a confocal microscope to investigate the fluorescence of (4-daspi) in glycerol/water solutions close to the interface using hydrophilic or hydrophobic cover slips. Despite the dye’s high solubility in water, the observed lengthening of the fluorescence lifetime close to the hydrophobic surface, implies a surprising affinity of the dye with the surface. Because the homogeneous solution and the refractive index mismatch reduces the optical sectioning power of the microscope, we quantify the affinity with the help of a simple model of the signal vs. depth of focus, exhibiting surface and bulk contributions. The model reduces artefacts due to refractive index mismatch, as supported by Monte Carlo ray tracing simulations
    corecore