405 research outputs found
Cost-effectiveness analysis of a pragmatic randomized trial evaluating surgical reconstruction versus rehabilitation in patients with long-standing anterior cruciate ligament injury
Aims
The aim of this study was to estimate the incremental use of resources, costs, and quality of life outcomes associated with surgical reconstruction compared to rehabilitation for long-standing anterior cruciate ligament (ACL) injury in the NHS, and to estimate its cost-effectiveness.
Methods
A total of 316 patients were recruited and randomly assigned to either surgical reconstruction or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment). Healthcare resource use and health-related quality of life data (EuroQol five-dimension five-level health questionnaire) were collected in the trial at six, 12, and 18 months using self-reported questionnaires and medical records. Using intention-to-treat analysis, differences in costs, and quality-adjusted life years (QALYs) between treatment arms were estimated adjusting for baseline differences and following multiple imputation of missing data. The incremental cost-effectiveness ratio (ICER) was estimated as the difference in costs divided by the difference in QALYs between reconstruction and rehabilitation.
Results
At 18 months, patients in the surgical reconstruction arm reported higher QALYs (0.052 (95% confidence interval (CI) -0.012 to 0.117); p = 0.177) and higher NHS costs (£1,017 (95% CI 557 to 1,476); p < 0.001) compared to rehabilitation. This resulted in an ICER of £19,346 per QALY with the probability of surgical reconstruction being cost-effective of 51% and 72% at a willingness-to-pay threshold of £20,000 and £30,000 per QALY, respectively.
Conclusion
Surgical reconstruction as a management strategy for patients with long-standing ACL injury is more effective, but more expensive, at 18 months compared to rehabilitation management. In the UK setting, surgical reconstruction is cost-effective
A novel nitrogen removal technology pre-treating chicken manure, prior to anaerobic digestion
Chicken manure is an agricultural by-product that is a problematic feedstock for anaerobic digestion due to its high nitrogen content inhibiting methane yields. This research examines a novel pilot-scale method of ammonia stripping, the nitrogen recovery process (NRP) developed by Alchemy Utilities Ltd. The NRP was designed to remove and recover nitrogen from chicken manure and two different operating conditions were examined. Both operating conditions demonstrated successful nitrogen removal and recovery. The biochemical methane potential assays were used to compare the digestibility of the NRP-treated chicken manures to that of a fresh chicken manure control. Overall, the biochemical methane potential assays demonstrated that some NRP-treated chicken manure treatments produced significantly more methane compared to untreated manure, with no inhibition occurring in relation to ammonium. However, some of the NRP-treated chicken manures produced similar or lower methane yields compared to fresh chicken manure. The NRP requires further development to improve the efficiency of the pilot-scale unit for commercial-scale operation and longer-term continuous anaerobic digestion trials are required to determine longer-term methane yield and ammonium inhibition effects. However, these initial results clearly demonstrate the technology’s potential and novel application for decentralised, on-farm nitrogen recovery and subsequent anaerobic digestion of chicken manure
The geometry of the higher dimensional black hole thermodynamics in Einstein-Gauss-Bonnet theory
This paper deals with five-dimensional black hole solutions in (a)
Einstein-Yang-Mills-Gauss-Bonnet theory and (b)Einstein-Maxwell-Gauss-Bonnet
theory with a cosmological constant for spherically symmetric space time. The
geometry of the black hole thermodynamics has been studied for both the black
holes.Comment: 8 page
Thermodynamic curvature and black holes
I give a relatively broad survey of thermodynamic curvature , one spanning
results in fluids and solids, spin systems, and black hole thermodynamics.
results from the thermodynamic information metric giving thermodynamic
fluctuations. has a unique status in thermodynamics as being a geometric
invariant, the same for any given thermodynamic state. In fluid and solid
systems, the sign of indicates the character of microscopic interactions,
repulsive or attractive. gives the average size of organized mesoscopic
fluctuating structures. The broad generality of thermodynamic principles might
lead one to believe the same for black hole thermodynamics. This paper explores
this issue with a systematic tabulation of results in a number of cases.Comment: 27 pages, 10 figures, 7 tables, 78 references. Talk presented at the
conference Breaking of Supersymmetry and Ultraviolet Divergences in extended
Supergravity, in Frascati, Italy, March 27, 2013. v2 corrects some small
problem
Phase transitions in geometrothermodynamics
Using the formalism of geometrothermodynamics, we investigate the geometric
properties of the equilibrium manifold for diverse thermodynamic systems.
Starting from Legendre invariant metrics of the phase manifold, we derive
thermodynamic metrics for the equilibrium manifold whose curvature becomes
singular at those points where phase transitions of first and second order
occur. We conclude that the thermodynamic curvature of the equilibrium
manifold, as defined in geometrothermodynamics, can be used as a measure of
thermodynamic interaction in diverse systems with two and three thermodynamic
degrees of freedom
Kerr-Newman Black Hole Thermodynamical State Space: Blockwise Coordinates
A coordinate system that blockwise-simplifies the Kerr-Newman black hole's
thermodynamical state space Ruppeiner metric geometry is constructed, with
discussion of the limiting cases corresponding to simpler black holes. It is
deduced that one of the three conformal Killing vectors of the
Reissner-Nordstrom and Kerr cases (whose thermodynamical state space metrics
are 2 by 2 and conformally flat) survives generalization to the Kerr-Newman
case's 3 by 3 thermodynamical state space metric.Comment: 4 pages incl 2 figs. Accepted by Gen. Rel. Grav. Replaced with
Accepted version (minor corrections
Geometrothermodynamics of five dimensional black holes in Einstein-Gauss-Bonnet-theory
We investigate the thermodynamic properties of 5D static and spherically
symmetric black holes in (i) Einstein-Maxwell-Gauss-Bonnet theory, (ii)
Einstein-Maxwell-Gauss-Bonnet theory with negative cosmological constant, and
in (iii) Einstein-Yang-Mills-Gauss-Bonnet theory. To formulate the
thermodynamics of these black holes we use the Bekenstein-Hawking entropy
relation and, alternatively, a modified entropy formula which follows from the
first law of thermodynamics of black holes. The results of both approaches are
not equivalent. Using the formalism of geometrothermodynamics, we introduce in
the manifold of equilibrium states a Legendre invariant metric for each black
hole and for each thermodynamic approach, and show that the thermodynamic
curvature diverges at those points where the temperature vanishes and the heat
capacity diverges.Comment: New sections added, references adde
'Just open your eyes a bit more': The methodological challenges of researching black and minority ethnic students' experiences of physical education teacher education
In this paper we discuss some of the challenges of centralising 'race' and ethnicity in Physical Education (PE) research, through reflecting on the design and implementation of a study exploring Black and minority ethnic students' experiences of their teacher education. Our aim in the paper is to contribute to ongoing theoretical and methodological debates about intersectionality, and specifically about difference and power in the research process. As McCorkel and Myers notes, the 'researchers' backstage'-the assumptions, motivations, narratives and relations-that underpin any research are not always made visible and yet are highly significant in judging the quality and substance of the resulting project. As feminists, we argue that the invisibility of 'race' and ethnicity within Physical Education Teacher Education (PETE), and PE research more widely, is untenable; however, we also show how centralising 'race' and ethnicity raised significant methodological and epistemological questions, particularly given our position as White researchers and lecturers. In this paper, we reflect on a number of aspects of our research 'journey': the theoretical and methodological challenges of operationalising concepts of 'race' and ethnicity, the practical issues and dilemmas involved in recruiting participants for the study, the difficulties of 'talking race' personally and professionally and challenges of representing the experiences of 'others'. © 2012 Copyright Taylor and Francis Group, LLC
Thermodynamical Metrics and Black Hole Phase Transitions
An important phase transition in black hole thermodynamics is associated with
the divergence of the specific heat with fixed charge and angular momenta, yet
one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's
energy metric reveals this phase transition. In this paper, we introduce a new
thermodynamical metric based on the Hessian matrix of several free energy. We
demonstrate, by studying various charged and rotating black holes, that the
divergence of the specific heat corresponds to the curvature singularity of
this new metric. We further investigate metrics on all thermodynamical
potentials generated by Legendre transformations and study correspondences
between curvature singularities and phase transition signals. We show in
general that for a system with n-pairs of intensive/extensive variables, all
thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional
space. We also generalize the Ruppeiner metrics and they are all conformal to
the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished
and the Hawking-Page phase transition clarified; to appear in JHE
Geometro-thermodynamics of tidal charged black holes
Tidal charged spherically symmetric vacuum brane black holes are
characterized by their mass m and tidal charge q, an imprint of the
5-dimensional Weyl curvature. For q>0 they are formally identical to the
Reissner-Nordstr\"om black hole of general relativity. We study the
thermodynamics and thermodynamic geometries of tidal charged black holes and
discuss similarities and differences as compared to the Reissner-Nordstr\"om
black hole. As a similarity, we show that (for q>0) the heat capacity of the
tidal charged black hole diverges on a set of measure zero of the parameter
space, nevertheless both the regularity of the Ruppeiner metric and a
Poincar\'e stability analysis shows no phase transition at those points. The
thermodynamic state spaces being different indicates that the underlying
statistical models could be different. We find that the q<0 parameter range,
which enhances the localization of gravity on the brane, is thermodynamically
preferred. Finally we constrain for the first time the possible range of the
tidal charge from the thermodynamic limit on gravitational radiation efficiency
at black hole mergers.Comment: v3: 23 pages, 8 figures, 1 table, published versio
- …