6 research outputs found
Biomechanical analysis of two types of osseointegrated transfemoral prosthesis
In the last two decades, osseointegrated prostheses have been shown to be a good alternative for lower limb amputees experiencing complications in using a traditional socket-type prosthesis; however, restraining biomechanical issues, such as peri-prosthetic bone fractures or loosening, are present. To better understand and overcome these limiting issues, and thus reduce the number of implant failures, many studies have investigated the stress distribution on bone and implant during normal daily activities. The aim of this study was a biomechanical analysis of two different osseointegrated implants, a screw-type (OPRA) and a press fit system (OPL, Osseointegrated Prosthetic Limb), to evaluate the stresses generated in bone and prosthesis during a fall. In particular, four scenarios have been experimentally reproduced to determine the loads on the limb during different kinds of fall. For this purpose, a motion capture system and a force plate have been used. Numerical FEM (Finite Element Method) simulations have been performed to compare the behaviour of the OPRA and OPL systems in different fall scenarios. The obtained results showed that a fall backwards due to balance loss is the most stressful scenario among the ones analysed. As regards the comparison between OPRA and OPL devices, it emerged they have similar behaviours in terms of peak values of the stress, but the OPL implant generates larger high-stress areas in the distal femur as compared with the OPRA system
Study of Stress Distribution in Press-Fit Transfemoral Implants: Standard Versus Patient-Specific Design
Osseointegrated implant is a promising solution for limb amputations,
but its widespread use is limited by risks such as bone resorption, infections, and
strict patient requirements. Typically, the bone and prosthesis are coupled using a
press-fit condition, providing short-term stability, or primary stability (PS), which
leads to bone in-growth and long-term stability, or secondary stability (SS). However,
the greater stiffness of the implant compared to the bone is a concern for SS.
Currently, osseointegrated implants are commercially available only in fixed configurations,
with a limited use of customization. This study aims to compare the
contact effectiveness of three press-fitted intramedullary stems for femoral amputations, developed using three designs (straight, standard curvature, and patientspecific
curvature). Moreover, a novel implant design methodology is reported,
such is an easy way to develop a patient-specific design. The von Mises stress distribution at the bone-implant interface was analyzed. The study uses CAD models of a femur acquired through CT scans. A FEA was conducted to evaluate the elastic behavior of the bone when the implant is press-fitted with an interference of 0.1 mm. The outcomes show how the patient-specific implant result in a more physiological distribution of the load in the bone. This study could be used as a starting point for further studies on primary and secondary stabilities
Assessment of paradoxical anterior translation in a CR total knee prosthesis coupling dynamic RSA and FE techniques
Purpose: The study aims were to assess the kinematic data, Internal-External (IE) rotation, and Antero-Posterior (AP) translation of the contact points between the femoral condyles and polyethylene insert and to develop a combined dynamic RSA-FE (Radiostereometric â Finite Element) model that gives results congruent with the literature. Methods: A cohort of 15 patients who underwent cemented cruciate-retaining highly congruent mobile-bearing total knee arthroplasty were analyzed during a sit-to-stand motor task. The kinematical data from Dynamic RSA were used as input for a patient-specific FE model to calculate condylar contact points between the femoral component and polyethylene insert. Results: The femoral component showed an overall range about 4 mm of AP translation during the whole motor task, and the majority of the movement was after 40° of flexion. Concerning the IE rotation, the femoral component started from an externally rotate position (â 6.7 ± 10°) at 80° of flexion and performed an internal rotation during the entire motor task. The overall range of the IE rotation was 8.2°. Conclusions: During the sit to stand, a slight anterior translation from 40° to 0° of flexion of the femoral component with respect to polyethylene insert, which could represent a paradoxical anterior translation. Despite a paradoxical anterior femoral translation was detected, the implants were found to be stable. Dynamic RSA and FE combined technique could provide information about prosthetic componentâs stress and strain distribution and the influence of the different designs during the movement
Numerical simulations on periprosthetic bone remodeling: a systematic review
Background and objective: The aim of the present study was to review the literature concerning the analysis of periprosthetic bone remodeling through finite element (FE) simulation. Methods: A systematic review was conducted on 9 databases, taking into account a ten-year time period (from 2009 until 2020). The inclusion criteria were: articles published in English, publication date after 2009, full text articles, articles containing the keywords both in the abstract and in the title. The articles were classified through the following parameters: dimensionality of the simulation, modelling of the bone-prosthesis interface, output parameters, type of simulated prosthesis, bone remodeling algorithm. Results: Sixty-seven articles were included in the study. Femur and tooth were the most evaluated bone segment (respectively 41.8% and 29.9%). The 55.2% of the evaluated articles used a bonded bone-prosthesis interface, 73% used 3D simulations, 67.2% of the articles (45 articles) evaluate the bone remodeling by the bone density variation. At last, 59.7% of the articles employed algorithms based on a specific remodeling function. Conclusions: Increasing interest in the bone remodeling FE analysis in different bone segments emerged from the review, and heterogeneous solutions were adopted. An optimal balance between computational cost and accuracy is needed to accurately simulate the bone remodeling phenomenon in the post-operative period
Analysis of different geometrical features to achieve close-to-bone stiffness material properties in medical device: A feasibility numerical study
Background and objective: In orthopedic medical devices, elasto-plastic behavior differences between bone and metallic materials could lead to mechanical issues at the bone-implant interface, as stress shielding. Those issue are mainly related to knee and hip arthroplasty, and they could be responsible for implant failure. To reduce mismatching-related adverse events between bone and prosthesis mechanical properties, modifying the implant's internal geometry varying the bulk stiffness and density could be the right approach. Therefore, this feasibility study aims to assess which in-body gap geometry improves, by reducing, the bulk stiffness. Methods: Using five finite element models, a uniaxial compression test in five cubes with a 20 mm thickness was simulated and analyzed. The displacements, strain and Young Modulus were calculated in four cubes, each containing internal prismatic gaps with different transversal sections (squared, hexagonal, octagonal, and circular). Those were compared with a fifth full-volume cube used as control. Results: The most significant difference have been achieved in displacement values, in cubes containing internal gaps with hexagonal and circular transversal sections (82 ”m and 82.5 ”m, respectively), when compared to the full-volume cube (69.3 ”m). Conclusions: This study suggests that hexagonal and circular shape of the gaps allows obtaining the lower rigidity in a size range of 4 mm, offering a starting approach to achieve a âclose-to-boneâ material, with a potential use in prosthetic devices with limited thickness
A New Approach to Evaluate the Biomechanical Characteristics of Osseointegrated Dental Implants
Tooth loss is a common pathology that affects many people. Dental osseointegrated implants are the ideal solution to restore normal functionality in partially or completely edentulous patients. The not perfect osseointegration and the fixture fracture are the main causes of failure for these kinds of implant. To avoid these drawbacks, several studies have been conducted to analyse the behaviour of dental implants.
Aim of this work is to analyse the biomechanical behaviour of three different endosseous dental implants. For this purpose, a new numerical model has been developed to simulate different levels of osseointegration and to evaluate the stress values on the bone at different times. In this way, it can be investigated the possibility of anticipating the use of dental implants that usually is delayed three months after surgery. Obtained results confirm the validity of the proposed approach and can provide useful guidelines for dentists