15 research outputs found

    Bioconversion of lipid-extracted algal biomass into ethanol

    Get PDF
    2016 Spring.Includes bibliographical references.Energy security, high atmospheric greenhouse gas levels, and issues associated with fossil fuel extraction are among the incentives for developing alternative and renewable energy resources. Biofuels, produced from a wide range of feedstocks, have the potential to reduce greenhouse gas emissions. In particular, the use of microalgae as a feedstock has received a high level of interest in recent years. Microalgal biofuels are promising replacement for fossil fuels and have the potential to displace petroleum-based fuels while decrease greenhouse gas emissions. The primary focus of research and development toward algal biofuels has been on the production of biodiesel or renewable diesel from the lipid fraction, with use of the non-lipid biomass fraction for production of biogas, electricity, animal feed, or fertilizer. Since the non-lipid fraction, consisting of mainly carbohydrates and proteins, comprises approximately half of the algal biomass, our approach is biological conversion of the lipid-extracted algal biomass (LEAB) into fuels. We used LEAB from Nannochloropsis salina, and ethanol was the model product. The first step in conversion of LEAB to ethanol was deconstruction of the cell wall into fermentable substrates by using different acids or enzymes. Sugar release yields and rates were compared for different treatments. One-step sulfuric acid hydrolysis had the highest yield of released sugars, while the one-step hydrochloric acid treatment had the highest sugar release rate. Enzymatic hydrolysis produced acceptable sugar release rates and yields but enzymes designed for algal biomass deconstruction are still needed. Proteins were deconstructed using a commercially available protease. The hydrolysate, containing the released sugars, peptides, and amino acids, was used as a fermentation medium with no added nutrients. Three ethanologenic microorganisms were used for fermentation: two strains of Saccharomyces cerevisiae (JAY270 and ATCC 26603) and Zymomonas mobilis ATCC 10988. Ethanol yields and productivities were compared. Among the studied microorganisms, JAY270 had the highest ethanol yield while Z. mobilis had the lowest yield for most of the studied conditions. A protease treatment improved the biomass and ethanol yields of JAY270 by providing more carbon and nitrogen. To increase ethanol productivity, a continuous fermentation approach was adapted. Continuous stirred tank reactors have increased productivity over batch systems due to lower idle time. The downtime associated with batch fermentation is the time it takes for empting, cleaning, and filling the reactor. Productivity in the continuous fermentation was limited by the growth characteristics of the microorganism since at high flow rates, with washout occurring below a critical residence time. To overcome the washout problem, the use of an immobilized cell reactor was explored. The performance (ethanol productivity) of free and immobilized cells was compared using an enzymatic hydrolysate of LEAB. Higher ethanol productivities were observed for the continuous immobilized cell reactor compared to the stirred tank reactor

    Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides

    Get PDF
    Abstract Background Due to their high energy density and compatible physical properties, several monoterpenes have been investigated as potential renewable transportation fuels, either as blendstocks with petroleum or as drop-in replacements for use in vehicles (both heavy and light-weight) or in aviation. Sustainable microbial production of these biofuels requires the ability to utilize cheap and readily available feedstocks such as lignocellulosic biomass, which can be depolymerized into fermentable carbon sources such as glucose and xylose. However, common microbial production platforms such as the yeast Saccharomyces cerevisiae are not naturally capable of utilizing xylose, hence requiring extensive strain engineering and optimization to efficiently utilize lignocellulosic feedstocks. In contrast, the oleaginous red yeast Rhodosporidium toruloides is capable of efficiently metabolizing both xylose and glucose, suggesting that it may be a suitable host for the production of lignocellulosic bioproducts. In addition, R. toruloides naturally produces several carotenoids (C40 terpenoids), indicating that it may have a naturally high carbon flux through its mevalonate (MVA) pathway, providing pools of intermediates for the production of a wide range of heterologous terpene-based biofuels and bioproducts from lignocellulose. Results Sixteen terpene synthases (TS) originating from plants, bacteria and fungi were evaluated for their ability to produce a total of nine different monoterpenes in R. toruloides. Eight of these TS were functional and produced several different monoterpenes, either as individual compounds or as mixtures, with 1,8-cineole, sabinene, ocimene, pinene, limonene, and carene being produced at the highest levels. The 1,8-cineole synthase HYP3 from Hypoxylon sp. E74060B produced the highest titer of 14.94 ± 1.84 mg/L 1,8-cineole in YPD medium and was selected for further optimization and fuel properties study. Production of 1,8-cineole from lignocellulose was also demonstrated in a 2L batch fermentation, and cineole production titers reached 34.6 mg/L in DMR-EH (Deacetylated, Mechanically Refined, Enzymatically Hydorlized) hydrolysate. Finally, the fuel properties of 1,8-cineole were examined, and indicate that it may be a suitable petroleum blend stock or drop-in replacement fuel for spark ignition engines. Conclusion Our results demonstrate that Rhodosporidium toruloides is a suitable microbial platform for the production of non-native monoterpenes with biofuel applications from lignocellulosic biomass

    Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels

    No full text
    Achieving low cost and high efficiency lignocellulose deconstruction is a critical step towards widespread adoption of lignocellulosic biofuels. Certain ionic liquid (IL)-based pretreatment processes effectively reduce recalcitrance of lignocellulose to enzymatic degradation but require either costly separations following pretreatment or novel IL compatible processes to mitigate downstream toxicity. Here we demonstrate at benchtop and pilot bioreactor scales a separation-free, intensified process for IL pretreatment, saccharification, and fermentation of sorghum biomass to produce the sesquiterpene bisabolene, a precursor to the renewable diesel and jet fuel bisabolane. The deconstruction process employs the IL cholinium lysinate ([Ch][Lys]), followed by enzymatic saccharification with the commercial enzyme cocktails Cellic CTec2 and HTec2. Glucose yields above 80% and xylose yields above 60% are observed at all scales tested. Unfiltered hydrolysate is fermented directly by Rhodosporidium toruloides-with glucose, xylose, acetate and lactate fully consumed during fermentation at all scales tested. Bisabolene titers improved with scale from 1.3 g L in 30 mL shake flasks to 2.2 g L in 20 L fermentation. The combined process enables conversion of saccharified IL-pretreated biomass directly to advanced biofuels with no separations or washing, minimal additions to facilitate fermentation, no loss of performance due to IL toxicity, and simplified fuel recovery via phase separation. This study is the first to demonstrate a separation-free IL based process for conversion of biomass to an advanced biofuel and is the first to demonstrate full consumption of glucose, xylose, acetate, and lactic acid in the presence of [Ch][Lys]

    Short-chain ketone production by engineered polyketide synthases in Streptomyces albus

    Get PDF
    Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l of C6 and C7 ethyl ketones and several hundred mg · l of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes
    corecore