1,775 research outputs found

    The hard start phenomena in hypergolic engines. Volume 2: Combustion characteristics of propellants and propellant combinations

    Get PDF
    The combustion characteristics of hypergolic propellants are described. A research project was conducted to determine if the reaction control system engine propellants on Apollo spacecraft undergo explosive reaction when subjected to conditions present in the engine at the time of ignition. Combustion characteristics pertinent to the hard-start phenomenon are considered. The thermal stability of frozen mixtures of hydrazine-based fuels with nitrogen tetroxide was analyzed. Results of the tests are presented in the form of tables and graphs

    The hard start phenomena in hypergolic engines. Volume 3: Physical and combustion characteristics of engine residuals

    Get PDF
    An investigation was conducted to determine the cause of starting problems in the hypergolic rocket engines of the Apollo reaction control (RCS) engines. The scope of the investigation was as follows: (1) to establish that chemical reactions occurred during the preignition and post combustion periods, (2) to identify the chemical species of the products of preignition and post combustion reaction, and (3) to determine the explosive nature of the identified species. The methods used in identifying the chemical products are described species. The infrared spectra, X-ray spectra, and other signatures of the compounds are presented. The physical and explosion characteristics of various hypergolic agents are reported

    The hard start phenomena in hypergolic engines. Volume 5: RCS engine deformation and destruct tests

    Get PDF
    Tests were conducted to determine the causes of Apollo Reaction Control (RCS) engine failures. Stainless steel engines constructed for use in the destructive tests are described. The tests conducted during the three phase investigation are discussed. It was determined that the explosive reaction that destroys the RCS engines occurs at the time of engine ignition and is apparently due to either the detonation of the heterogeneous constituents of the rocket engine, consisting primarily of unreacted propellant droplets and vapors, and/or the detonation of explosive materials accumulated on the engine walls from previous pulses. Photographs of the effects of explosions on the simulated RCS engines are provided

    Lagrange-Fedosov Nonholonomic Manifolds

    Full text link
    We outline an unified approach to geometrization of Lagrange mechanics, Finsler geometry and geometric methods of constructing exact solutions with generic off-diagonal terms and nonholonomic variables in gravity theories. Such geometries with induced almost symplectic structure are modelled on nonholonomic manifolds provided with nonintegrable distributions defining nonlinear connections. We introduce the concept of Lagrange-Fedosov spaces and Fedosov nonholonomic manifolds provided with almost symplectic connection adapted to the nonlinear connection structure. We investigate the main properties of generalized Fedosov nonholonomic manifolds and analyze exact solutions defining almost symplectic Einstein spaces.Comment: latex2e, v3, published variant, with new S.V. affiliatio

    Exploratory study of hypergolic ignition spike phenomena, phase 2, part 2, July 1 to September 30, 1966

    Get PDF
    Chemical analysis, physical properties, and combustion characteristics of hydrazine nitrat

    Fault Tolerant Operation of Field Programmable Gate Arrays

    Get PDF
    A method of fault tolerant reconfiguration and operation of a field programmable gate array (FPGA) during normal on-line operation includes selecting a programmable logic block as a programmable logic block under test, testing the programmable logic block under test, and detecting the existence of any faults in the programmable logic block under test. During testing, the programmable logic block under test is repeatedly reconfigured in order to test the programmable logic block completely in all possible modes of operation. Based on the results of the test, a test result indication is sent to a controller in communication with a memory for storing usage and fault status data for each programmable logic block. If a partially faulty test result indication is present, the controller determines an intended mode of operation of the partially faulty programmable logic block under test and reconfigures the logic block for further use, thus allowing a more gradual degradation of the field programmable gate array

    Method for Testing Field Programmable Gate Arrays

    Get PDF
    A method of testing field programmable gate arrays (FPGAs) includes the step of configuring programmable logic blocks of the FPGAs for completing a built-in self-test. Specifically, the FPGA under test may be configured to act as an iterative logic array wherein a first group of programmable logic blocks are configured as test pattern generators, output response analyzers and helper cells, and a second group of programmable logic blocks are configured as blocks under test. The blocks under test are then repeatedly reconfigured in order to completely test each block under test in all possible modes of operation. The first and second groups of programmable logic blocks are then repeatedly rearranged so that all the programmable logic blocks are established as blocks under test at least once. Following the rearrangement, the repeated reconfiguration of the blocks under test is performed once again
    corecore