12 research outputs found

    Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp

    Get PDF
    This study was performed to investigate the influence of ultrasound processing on tomato pulp containing no sunflower oil, or increasing amounts (i.e. 2.5%, 5% and 10%), on lycopene concentration and in vitro bioaccessibility at time zero and during storage at 5 \ub0C. Results confirmed previous findings in that ultrasonication was responsible for cell breakage and subsequent lycopene release in a highly viscous matrix. Neither the ultrasound process nor oil addition affected lycopene concentration. A decrease of approximately 35% lycopene content occurred at storage times longer than 15 days, due to isomerisation and oxidation reactions. No differences in lycopene in vitro bioaccessibility were found between the untreated and ultrasonically treated samples; this parameter decreased as a consequence of oil addition. Losses of lycopene in vitro bioaccessibility ranging between 50% and 80% occurred in the untreated and ultrasonically treated tomato pulps with and without oil during storage, mainly due to carotenoid degradation

    Case report: Canine distemper virus infection as a cause of central nervous system disease in a Eurasian lynx (Lynx lynx)

    Get PDF
    The Eurasian lynx (Lynx lynx) represents an endangered species with only small populations remaining in Central Europe. Knowledge about the threat posed by potential infectious agents to these animals is crucial for informing ongoing protection measures. Canine distemper virus (CDV) is known to have a wide host range with infection reported in many mammalian species including several lynx species (Lynx pardinus, Lynx canadensis, Lynx rufus), but is an extremely rare finding in the Eurasian lynx. The present report describes a case of a Eurasian lynx showing central nervous signs, including apathy and ataxia. A CT scan revealed multiple hypodense areas in different localizations within the brain as well as enlarged liquid filled areas, leading to the suspicion of a degenerative process. Due to clinical deterioration, the animal was euthanized and submitted for macroscopical and histological investigations. Histological investigations revealed multifocal demyelinations in the cerebellum, brain stem and cervical spinal cord as well as a multifocal, perivascular, lymphohistiocytic meningoencephalitis. A CDV infection was confirmed by immunohistochemistry and RT-PCR analyses. This CDV infection of a Eurasian lynx resembles a classical chronic manifestation of distemper in dogs and highlights the threat posed by canine distemper to this species

    Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility.

    No full text
    The influence of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility was investigated. To this purpose, samples were subjected to ultrasound at a frequency and amplitude of 24 kHz and 100 lm, respectively, for increasing lengths of time. Results showed that ultrasound was responsible for loss of tomato cell integrity, as well as a decrease in the degree of pectin esterification. In contrast, rheological measurements showed that ultrasonically treated tomato pulp had greater gel-like properties than an untreated sample. It was inferred that ultrasound promoted the formation of a new network due to hydrogen bonding and hydrophobic interactions among the de-esterified pectin molecules. Such a reinforcement of the tomato pulp structure resulted in a decrease in lycopene in vitro bioaccessibility of the ultrasonically treated tomato pulp, probably due to the fact that the presence of a stronger network may make lycopene less available to the digestion process

    Effect of low frequency, high power pool ultrasonics on viscosity of fluid food: Modeling and experimental validation

    No full text
    Ultrasound induced changes of certain physical and chemical properties of molecules are nowadays exploited at industrial level for food processing and preservation purposes. Deeper knowledge on the mechanisms influencing these changes would contribute to extend implementations of ultrasound to steer structure and functionality of food molecules. In this study the laws of transfer phenomena were applied in order to investigate on the viscosity changes of a pectin-containing fluid flow, i.e. tomato puree in a cylindrical reactor, induced by low frequency, high intensity ultrasound treatments. In particular, the model for fluid motion was associated to a validating rheological investigation. Results showed a good agreement between experimental and computational data for temperature and viscosity progresses with time. A new power law for viscosity has been proposed based on reactor aspect ratio and Rayleigh numbers for natural convection

    Effect of vacuum roasting on acrylamide formation and reduction in coffee beans

    No full text
    Coffea arabica beans were roasted in an oven at 200 C for increasing lengths of time under vacuum (i.e. 0.15 kPa). The samples were then analysed for colour, weight loss, acrylamide concentration and sensory properties. Data were compared with those obtained from coffee roasted at atmospheric pressure (i.e. conventional roasting), as well as at atmospheric pressure for 10 min followed by vacuum treatment (0.15 kPa; i.e. conventional-vacuum roasting). To compare the different treatments, weight loss, colour and acrylamide changes were expressed as a function of the thermal effect received by the coffee beans during the different roasting processes. Vacuum-processed coffee with medium roast degree had approximately 50% less acrylamide than its conventionally roasted counterpart. It was inferred that the low pressure generated inside the oven during the vacuum process exerted a stripping effect preventing acrylamide from being accumulated. Vacuum-processed coffee showed similar colour and sensory properties to conventionally roasted coffee

    SARS-CoV-2-Specific Antibodies in Domestic Cats during First COVID-19 Wave, Europe

    No full text
    We conducted a severe acute respiratory syndrome coronavirus 2 antibody seroprevalence study among >2,000 domestic cats from 4 countries during the first coronavirus disease wave in Europe. We found 4.4% seroprevalence using a virus neutralization test and 4.3% using a receptor-binding domain ELISA, demonstrating probable human-to-cat transmission

    IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes.

    No full text
    IL-10 is a potent anti-inflammatory molecule that, in phagocytes, negatively targets cytokine expression at transcriptional and posttranscriptional levels. Posttranscriptional checkpoints also represent the specific target of a recently discovered, evolutionary conserved class of small silencing RNAs known as "microRNAs" (miRNAs), which display the peculiar function of negatively regulating mRNA processing, stability, and translation. In this study, we report that activation of primary human monocytes up-regulates the expression of miR-187 both in vitro and in vivo. Accordingly, we identify miR-187 as an IL-10-dependent miRNA playing a role in IL-10-mediated suppression of TNF-α, IL-6, and the p40 subunit of IL-12 (IL-12p40) produced by primary human monocytes following activation of Toll-like receptor 4 (TLR4). Ectopic expression of miR-187 consistently and selectively reduces TNFα, IL-6, and IL-12p40 produced by LPS-activated monocytes. Conversely, the production of LPS-induced TNF-α, IL-6, and IL-12p40 is increased significantly when miR-187 expression is silenced. Our data demonstrate that miR-187 directly targets TNF-α mRNA stability and translation and indirectly decreases IL-6 and IL-12p40 expression via down-modulation of IκBζ, a master regulator of the transcription of these latter two cytokines. These results uncover an miRNA-mediated pathway controlling cytokine expression and demonstrate a central role of miR-187 in the physiological regulation of IL-10-driven anti-inflammatory responses

    Highly pathogenic avian influenza A virus (HPAIV) H5N1 infection in two European grey seals (Halichoerus grypus) with encephalitis

    No full text
    ABSTRACTRecent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of adaptation to sustained transmission in mammals, including humans. We report H5N1 clade 2.3.4.4b infection of two grey seals (Halichoerus grypus) from coastal waters of The Netherlands and Germany in December 2022 and February 2023, respectively. Histological and immunohistochemical investigations showed in both animals a non-suppurative and necrotising encephalitis with viral antigen restricted to the neuroparenchyma. Whole genome sequencing showed the presence of HPAIV H5N1 clade 2.3.4.4b strains in brain tissue, which were closely related to sympatric avian influenza viruses. Viral RNA was also detected in the lung of the seal from Germany by real-time quantitative PCR. No other organs tested positive. The mammalian adaptation PB2-E627K mutation was identified in approximately 40% of the virus population present in the brain tissue of the German seal. Retrospective screening for nucleoprotein-specific antibodies, of sera collected from 251 seals sampled in this region from 2020 to 2023, did not show evidence of influenza A virus-specific antibodies. Similarly, screening by reverse transcription PCR of tissues of 101 seals that had died along the Dutch coast in the period 2020–2021, did not show evidence of influenza virus infection. Collectively, these results indicate that individual seals are sporadically infected with HPAIV-H5N1 clade 2.3.4.4b, resulting in an encephalitis in the absence of a systemic infection, and with no evidence thus far of onward spread between seals

    SARS-CoV-2-Specific Antibodies in Domestic Cats during First COVID-19 Wave, Europe

    No full text
    We conducted a severe acute respiratory syndrome coronavirus 2 antibody seroprevalence study among >2,000 domestic cats from 4 countries during the first coronavirus disease wave in Europe. We found 4.4% seroprevalence using a virus neutralization test and 4.3% using a receptor-binding domain ELISA, demonstrating probable human-to-cat transmission

    Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models

    Get PDF
    Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.</p
    corecore