77 research outputs found

    Anisotropy of Vortex-Liquid and Vortex-Solid Phases in Single Crystals of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}: Violation of the Scaling Law

    Full text link
    The vortex-liquid and vortex-solid phases in single crystals of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} placed in tilted magnetic fields are studied by in-plane resistivity measurements using the Corbino geometry to avoid spurious surface barrier effects. It was found that the anisotropy of the vortex-solid phase increases with temperature and exhibits a maximum at T0.97TcT\approx 0.97 T_c. In contrast, the anisotropy of the vortex-liquid rises monotonically across the whole measured temperature range. The observed behavior is discussed in the context of dimensional crossover and thermal fluctuations of vortices in the strongly layered system.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    The London theory of the crossing-vortex lattice in highly anisotropic layered superconductors

    Full text link
    A novel description of Josephson vortices (JVs) crossed by the pancake vortices (PVs) is proposed on the basis of the anisotropic London theory. The field distribution of a JV and its energy have been calculated for both dense (aλJa\lambda_J) PV lattices with distance aa between PVs, and the nonlinear JV core size λJ\lambda_J. It is shown that the ``shifted'' PV lattice (PVs displaced mainly along JVs in the crossing vortex lattice structure), formed in high out-of-plane magnetic fields transforms into the PV lattice ``trapped'' by the JV sublattice at a certain field, lower than Φ0/γ2s2\Phi_0/\gamma^2s^2, where Φ0\Phi_0 is the flux quantum, γ\gamma is the anisotropy parameter and ss is the distance between CuO2_2 planes. With further decreasing BzB_z, the free energy of the crossing vortex lattice structure (PV and JV sublattices coexist separately) can exceed the free energy of the tilted lattice (common PV-JV vortex structure) in the case of γs<λab\gamma s<\lambda_{ab} with the in-plane penetration depth λab\lambda_{ab} if the low (Bx<γΦ0/λab2B_x<\gamma\Phi_0/\lambda_{ab}^2) or high (BxΦ0/γs2B_x\gtrsim \Phi_0/\gamma s^2) in-plane magnetic field is applied. It means that the crossing vortex structure is realized in the intermediate field orientations, while the tilted vortex lattice can exist if the magnetic field is aligned near the cc-axis and the abab-plane as well. In the intermediate in-plane fields γΦ0/λab2BxΦ0/γs2\gamma\Phi_0/\lambda_{ab}^2\lesssim B_x \lesssim \Phi_0/\gamma s^2, the crossing vortex structure with the ``trapped'' PV sublattice seems to settle in until the lock-in transition occurs since this structure has the lower energy with respect to the tilted vortex structure in the magnetic field H{\vec H} oriented near the abab-plane.Comment: 15 pages, 6 figures, accepted for publication in PR

    Factors affecting labelling yield of 111In-DTPA-BSA

    Get PDF
    Radiolabelling of antibodies depends on a number of factors including the chemical characteristics of the nuclide and the techniques employed for its incorporation into protein. For preliminary research we used model system and investigate the influence of different factors affecting labelling. Obtained results were successfully used for further radiolabelling of antibodies with different trivalent metals.Physical chemistry 2006 : 8th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 26-29 September 200

    Knot homology via derived categories of coherent sheaves II, sl(m) case

    Full text link
    Using derived categories of equivariant coherent sheaves we construct a knot homology theory which categorifies the quantum sl(m) knot polynomial. Our knot homology naturally satisfies the categorified MOY relations and is conjecturally isomorphic to Khovanov-Rozansky homology. Our construction is motivated by the geometric Satake correspondence and is related to Manolescu's by homological mirror symmetry.Comment: 51 pages, 9 figure

    The role of complementary learning systems in learning and consolidation in a quasi-regular domain

    Get PDF
    We examine the role of off-line memory consolidation processes in the learning and retention of a new quasi-regular linguistic system similar to the English past tense. Quasi-regular systems are characterized by a dominance of systematic, regular forms (e.g., walk-walked, jump-jumped) alongside a smaller number of high frequency irregulars (e.g., sit-sat, go-went), and are found across many cognitive domains, from spelling-sound mappings to inflectional morphology to semantic cognition. Participants were trained on the novel morphological system using an artificial language paradigm, and then tested after different delays. Based on a complementary systems account of memory, we predicted that irregular forms would show stronger off-line changes due to consolidation processes. Across two experiments, participants were tested either immediately after learning, 12 h later with or without sleep, or 24 h later. Testing involved generalization of the morphological patterns to previously unseen words (both experiments) as well as recall of the trained words (Experiment 2). In generalization, participants showed 'default' regularization across a range of novel forms, as well as irregularization for previously unseen items that were similar to unique high-frequency irregular trained forms. Both patterns of performance remained stable across the delays. Generalizations involving competing tendencies to regularize and irregularize were balanced between the two immediately after learning. Crucially, at both 12-h delays the tendency to irregularize in these cases was strengthened, with further strengthening after 24 h. Consolidated knowledge of both regular and irregular trained items contributed significantly to generalization performance, with evidence of strengthening of irregular forms and weakening of regular forms. We interpret these findings in the context of a complementary systems model, and discuss how maintenance, strengthening, and forgetting of the new memories across sleep and wake can play a role in acquiring quasi-regular systems

    Effect of mechanical activation on carbothermal synthesis and densification of ZrC

    Get PDF
    Mixtures of ZrO2 and C were prepared by high-energy ball milling. Powders were milled for times from 0 to 120 minutes in air atmosphere. As milling time increased, surface area of powders increased, indicating significant particle size reduction. Milled powders were densified by spark plasma sintering at 2000 °C. Unmilled powders did not reach full density. Milled powders reached full density, but ZrO2 impurities were found for specimens prepared from powders milled for 60 and 120 minutes. Microstructure analysis showed that grain size was less than 2 microns for powder milled for 15 minutes. Based on densification data and impurities level, milling time of 15 minutes appears to give the best balance of particle size reduction to promote densification while minimizing impurities level

    The hypertoric intersection cohomology ring

    Full text link
    We present a functorial computation of the equivariant intersection cohomology of a hypertoric variety, and endow it with a natural ring structure. When the hyperplane arrangement associated with the hypertoric variety is unimodular, we show that this ring structure is induced by a ring structure on the equivariant intersection cohomology sheaf in the equivariant derived category. The computation is given in terms of a localization functor which takes equivariant sheaves on a sufficiently nice stratified space to sheaves on a poset.Comment: Significant revisions in Section 5, with several corrected proof

    Spark plasma sintering of mechanically activated MGO-TiO2 system

    Get PDF
    MgTiO3 is a material often used in different types of high-frequency capacitors, temperature compensating capacitors, and chip capacitors, so the enhancement of this material is still the focus of many research groups due to its remarkable dielectric properties. Outstanding features can only be achieved when the ceramics are highly dense. Densification of magnesium titanate by Spark Plasma Sintering (SPS) was the aim of this work. Magnesium titanate ceramics were prepared by applying mechanical activation as the first step. Powders prepared in this way were SPS sintered, at 1200 °C with a heating rate of 100 °C/min. After reaching the desired temperature, a uniaxial pressure of 50 MPa was applied. The dwell time at this condition was 5 min, followed by cooling to room temperature at 5°C/min. X-ray diffraction was performed in order to establish the phase composition of milled powders and obtained ceramics. Differences between samples milled in various times intervals, as well as sintered ceramics were examined by means of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The presence of MgTiz0s phase was detected in XRD and was confirmed by EDS analysis for the non-milled ceramics. In the samples obtained from milled powders, no MgTi2O5 was detected in XRD patterns, but this phase was detected in EDS spectra in a lower amount. Dielectric measurements were performed at a wide range of frequencies, while the hardness of the SPS samples was measured at loads up to 10 N. The highest value of the hardness was obtained from powder milled for 15 min before SPS

    Characterization of mechanically activated ZrO2-C powder mixtures

    Get PDF
    Mechanical activation represents a very useful technique for powder processing prior to sintering process. First of all, it makes powders homogenized, leads to attrition of powder particles, and makes powder mixtures more reactive. Secondly, it can lead to mechano-chemical reaction, and finally, lowering of sintering time and temperature. Mixtures of ZrO2 and C were mechanically activated by high-energy ball milling. Powders were milled for times from 0 to 120 minutes in air atmosphere. Mechanically activated powder mixtures were characterized by various techniques, such as particle size analysis (PSA), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and diffraction scanning calorimetry along with thermo gravimetry (DSC-TGA). As milling time increased, surface area of powders increased, indicating significant particle size reduction. Mechanical activation for 15 minutes provides the best balance between particle size reduction and reactivity for the powders
    corecore