34 research outputs found

    An interaction torque control improving human force estimation of the rehab-exos exoskeleton

    No full text
    This paper describes the interaction torque control of the Rehab-Exos, an upper-limb robotic exoskeleton with direct torque joint sensors for interaction in Virtual Environments and rehabilitation. The control architecture consists in a centralized torque control and separated optimal torque observers for each joint of the exoskeleton. The optimal observer is a full-state Kalman filter providing the estimates of both internal and external torques acting on the joints and overcoming most of the issues due to the noise in the torque sensor signals. The centralized torque control is based on a full dynamics model of the exoskeleton, calculates the kinematics and dynamics of the system and estimates the feed-forward contribution for the compensation of dynamic loads measured by joint torque sensors. Experimental tests have been carried out to validate the desired torque tracking in haptic interaction tasks

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Search for central exclusive production of top quark pairs in proton-proton collisions at s\sqrt{s} = 13 TeV with tagged protons

    No full text
    International audienceA search for the central exclusive production of top quark-antiquark pairs (ttˉ\mathrm{t\bar{t}}) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1^{-1}. The ttˉ\mathrm{t\bar{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s\sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1^{-1} collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ>p_\mathrm{T}^\gamma > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV

    Hard color-singlet exchange in dijet events in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    International audienceEvents where the two leading jets are separated by a pseudorapidity interval devoid of particle activity, known as jet-gap-jet events, are studied in proton-proton collisions at s=\sqrt{s} = 13 TeV. The signature is expected from hard color-singlet exchange. Each of the highest transverse momentum (pTp_\mathrm{T}) jets must have pTjetp_\mathrm{T}^\text{jet}>\gt 40 GeV and pseudorapidity 1.4 <\ltηjet|\eta^\text{jet}|<\lt 4.7, with ηjet1ηjet2\eta^\text{jet1} \eta^\text{jet2}<\lt 0, where jet1\text{jet1} and jet2\text{jet2} are the leading and subleading jets in pTp_\mathrm{T}, respectively. The analysis is based on data collected by the CMS and TOTEM experiments during a low luminosity, high-β\beta^* run at the CERN LHC in 2015, with an integrated luminosity of 0.66 pb1^{-1}. Events with a low number of charged particles with pTp_\mathrm{T}>\gt 0.2 GeV in the interval η|\eta|<\lt 1 between the jets are observed in excess of calculations that assume only color-exchange. The fraction of events produced via color-singlet exchange, fCSEf_\text{CSE}, is measured as a function of pTjet2p_\mathrm{T}^\text{jet2}, the pseudorapidity difference between the two leading jets, and the azimuthal angular separation between the two leading jets. The fraction fCSEf_\text{CSE} has values of 0.4-1.0%. The results are compared with previous measurements and with predictions from perturbative quantum chromodynamics. In addition, the first study of jet-gap-jet events detected in association with an intact proton using a subsample of events with an integrated luminosity of 0.40 pb1^{-1} is presented. The intact protons are detected with the Roman pot detectors of the TOTEM experiment. The fCSEf_\text{CSE} in this sample is 2.91 ±\pm 0.70 (stat) 1.01+1.08^{+1.08}_{-1.01} (syst) times larger than that for inclusive dijet production in dijets with similar kinematics

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s= \sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1 ^{-1} collected in 2016--2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ> p_{\mathrm{T}}^{\gamma} > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ> m_{\gamma\gamma} > 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1 |\zeta_1| 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV

    First search for exclusive diphoton production at high mass with tagged protons in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp \to pγγ\gamma\gammap with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb1^{-1} collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons matches the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% CL are ζ1\lvert\zeta_1\rvert <\lt 2.9 ×\times 1013^{-13} GeV4^{-4} and ζ2\lvert\zeta_2\rvert <\lt 6.0 ×\times 1013^{-13} GeV4^{-4}

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s\sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1^{-1} collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ>p_\mathrm{T}^\gamma > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV
    corecore