59 research outputs found

    Quantification of the fine-scale distribution of Mn-nodules: insights from AUV multi-beam and optical imagery data fusion

    Get PDF
    Autonomous underwater vehicles (AUVs) offer unique possibilities for exploring the deep seafloor in high resolution over large areas. We highlight the results from AUV-based multibeam echosounder (MBES) bathymetry / backscatter and digital optical imagery from the DISCOL area acquired during research cruise SO242 in 2015. AUV bathymetry reveals a morphologically complex seafloor with rough terrain in seamount areas and low-relief variations in sedimentary abyssal plains which are covered in Mn-nodules. Backscatter provides valuable information about the seafloor type and particularly about the influence of Mn-nodules on the response of the transmitted acoustic signal. Primarily, Mn-nodule abundances were determined by means of automated nodule detection on AUV seafloor imagery and nodule metrics such as nodules m−2 were calculated automatically for each image allowing further spatial analysis within GIS in conjunction with the acoustic data. AUV-based backscatter was clustered using both raw data and corrected backscatter mosaics. In total, two unsupervised methods and one machine learning approach were utilized for backscatter classification and Mn-nodule predictive mapping. Bayesian statistical analysis was applied to the raw backscatter values resulting in six acoustic classes. In addition, Iterative Self-Organizing Data Analysis (ISODATA) clustering was applied to the backscatter mosaic and its statistics (mean, mode, 10th, and 90th quantiles) suggesting an optimum of six clusters as well. Part of the nodule metrics data was combined with bathymetry, bathymetric derivatives and backscatter statistics for predictive mapping of the Mn-nodule density using a Random Forest classifier. Results indicate that acoustic classes, predictions from Random Forest model and image-based nodule metrics show very similar spatial distribution patterns with acoustic classes hence capturing most of the fine-scale Mn-nodule variability. Backscatter classes reflect areas with homogeneous nodule density. A strong influence of mean backscatter, fine scale BPI and concavity of the bathymetry on nodule prediction is seen. These observations imply that nodule densities are generally affected by local micro-bathymetry in a way that is not yet fully understood. However, it can be concluded that the spatial occurrence of Mn-covered areas can be sufficiently analysed by means of acoustic classification and multivariate predictive mapping allowing to determine the spatial nodule density in a much more robust way than previously possible

    Wall treatments for aeroacoustic measurements in closed wind tunnel test sections

    Get PDF
    Aeroacoustic tests in closed wind tunnels are affected by reflections in the tunnel circuit and background noise. Reflections can be mitigated by lining the tunnel circuit. The present study investigates if lining exclusively the most accessible segment of a closed wind tunnel circuit, in particular the test section, is an approach which improves acoustic measurements. Literature shows that a wind tunnel lining material should have high acoustic absorption, low inertial resistivity and low surface roughness. Therefore, the test section of TU Delft's closed Low Turbulence Tunnel is lined with melamine foam wall liners. A total of 4 test section configurations were tested: baseline; test section with lining on the floor and ceiling; test section with lined side--panels; and test section lined at all surfaces (floor, ceiling and side--panels). An omnidirectional speaker is used for evaluating the wind tunnel's acoustic performance. A geometric modelling algorithm, based on the mirror-source method, is used to predict the effect of lining on primary reflections in the test section. In addition, reflections in the test section and in the tunnel circuit are characterized experimentally. The results show that the closed loop of the tunnel circuit is responsible for a long reverberation time in the test section. However, reflections inside the test section itself are the dominant source of acoustic interference at the microphone array location. The low fidelity geometric modelling algorithm is shown to be a valuable approach for an initial estimation of the acoustic benefit of lining, for both flow--off and --on conditions. Lining of the test section walls significantly reduces reflections from the reference source, as well as the aerodynamic background noise that reaches the array

    Conservation implications of <i>Sabellaria spinulosa</i> reef patches in a dynamic sandy-bottom environment

    Get PDF
    Biogenic reefs form biodiversity hotspots and are key components of marine ecosystems, making them priority habitats for nature conservation. However, the conservation status of biogenic reefs generally depends on their size and stability. Dynamic, patchy reefs may therefore be excluded from protection. Here, we studied epibenthos and epifauna density, richness, and community composition of patchy, dynamic Sabellaria spinulosa (ross worm) reefs in the North Sea. This study was conducted by comparing boxcore (endobenthos) and video transect (epifauna) data from two research campaigns in 2017 and 2019 to the Brown Bank area on the Dutch Continental Shelf, where S. spinulosa reefs were first discovered in 2017. The Brown Bank area is characterized by dynamic, migratory bedforms at multiple scales which potentially affect biogenic reef stability. We showed that S. spinulosa habitats had a patchy distribution and alternated with habitats comprised of plain sand. Average S. spinulosa habitat patch size was 5.57 ± 0.99 m and 3.94 ± 0.22 m in 2017 and 2019 respectively (mean ± SE), which especially in 2019 closely resembled the small-scale megaripple bedforms. Contrary to the endobenthos communities that were unaffected by S. spinulosa, epifauna density and species richness were at least two times higher in S. spinulosa habitats compared to sandy habitats, resulting in different community compositions between the two habitat types. We showed that S. spinulosa persisted in the area for almost 2 years. Although the stability of individual patches remained unclear, we demonstrated that even patchy biogenic reefs may promote density and local biodiversity of mobile, epibenthic species, very likely as a result of increased habitat heterogeneity provided by reef habitat patches. This indicates that patchy biogenic reefs that occur in dynamic environments may also have high ecological value and their conservation status should be (re)considered to ensure their protection

    Measuring centimeter-scale sand ripples using multibeam echosounder backscatter data from the Brown Bank area of the Dutch continental shelf

    Get PDF
    Backscatter data from multibeam echosounders are commonly used to classify seafloor sediment composition. Previously, it was found that the survey azimuth affects backscatter when small organized seafloor structures, such as sand ripples, are present. These sand ripples are too small to be detected in the multibeam bathymetry. Here, we show that such azimuth effects are time dependent and are useful to examine the orientation of sand ripples in relation to the flow direction of the tide. To this end, multibeam echosounder data at four different frequencies were gathered from the area of the Brown Bank in the North Sea. The acoustic results were compared to video and tide-flow data for validation. The sand ripples affected the backscatter at all frequencies, but for the lowest frequencies the effect was spread over more beam angles. Using the acoustic data made it possible to deduce the orientations of the sand ripples over areas of multiple square kilometers. We found that the top centimeter(s) of the seafloor undergoes a complete transformation every six hours, as the orientation of the sand ripples changes with the changing tide. Our methodology allows for morphology change detection at larger scales and higher resolutions than previously achieved

    Linking the morphology and ecology of subtidal soft-bottom marine benthic habitats:A novel multiscale approach

    Get PDF
    High-resolution surveying techniques of subtidal soft-bottom seafloor habitats show higher small-scale variation in topography and sediment type than previously thought, but the ecological relevance of this variation remains unclear. In addition, high-resolution surveys of benthic fauna show a large spatial variability in community composition, but this has yet poorly been linked to seafloor morphology and sediment composition. For instance, on soft-bottom coastal shelves, hydrodynamic forces from winds and tidal currents can cause nested multiscale morphological features ranging from metre-scale (mega)ripples, to sand waves and kilometre-scale linear sandbanks. This multiscale habitat heterogeneity is generally disregarded in the ecological assessments of benthic habitats. We therefore developed and tested a novel multiscale assessment toolbox that combines standard bathymetry, multibeam backscatter classification, video surveying of epibenthos and box core samples of sediment and macrobenthos. In a study on the Brown Bank, a sandbank in the southern North Sea, we found that these methods are greatly complementary and allow for more detail in the interpretation of benthic surveys. Acoustic and video data characterised the seafloor surface and subsurface, and macrobenthos communities were found to be structured by both sandbank and sand wave topography. We found indications that acoustic techniques can be used to determine the location of epibenthic reefs. The multiscale assessment toolbox furthermore allows formulating recommendations for conservation management related to the impact of sea floor disturbances through dredging and trawling.</p

    Accelerating the path towards carbon-free aviation

    Get PDF
    This paper, created by a group of aviation and energy experts from renowned universities and research centres in Europe, who oversee the fields of energy carriers, energy storage and conversion, propulsion, aerodynamics, flight mechanics, controls, structures, materials, multidisciplinary design, and life‐cycle engineering, aims to give an overview and assessment of promising future technologies. The paper therefore identifies the potential as well as research demands of these technologies on the path to a sustainable and more environmentally friendly aviation

    Long term costs and effects of reducing the number of twin pregnancies in IVF by single embryo transfer: the TwinSing study

    Get PDF
    Contains fulltext : 87274.pdf (publisher's version ) (Open Access)BACKGROUND: Pregnancies induced by in vitro fertilisation (IVF) often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The interpretation of current studies is limited because they used live birth as outcome measure and because they applied limited time horizons. So far, research on long-term outcomes of IVF twins and singletons is scarce and inconclusive. The objective of this study is to investigate the short (1-year) and long-term (5 and 18-year) costs and health outcomes of IVF singleton and twin children and to consider these in estimating the cost-effectiveness of single embryo transfer compared with double embryo transfer, from a societal and a healthcare perspective. METHODS/DESIGN: A multi-centre cohort study will be performed, in which IVF singletons and IVF twin children born between 2003 and 2005 of whom parents received IVF treatment in one of the five participating Dutch IVF centres, will be compared. Data collection will focus on children at risk of health problems and children in whom health problems actually occurred. First year of life data will be collected in approximately 1,278 children (619 singletons and 659 twin children). Data up to the fifth year of life will be collected in approximately 488 children (200 singletons and 288 twin children). Outcome measures are health status, health-related quality of life and costs. Data will be obtained from hospital information systems, a parent questionnaire and existing registries. Furthermore, a prognostic model will be developed that reflects the short and long-term costs and health outcomes of IVF singleton and twin children. This model will be linked to a Markov model of the short-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies to enable the calculation of the long-term cost-effectiveness. DISCUSSION: This is, to our knowledge, the first study that investigates the long-term costs and health outcomes of IVF singleton and twin children and the long-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies

    Aircraft Noise: The major sources, modelling capabilities, and reduction possibilities

    Get PDF
    In October 2014, the first ”Joint DLR & TU Delft Aviation Noise Workshop” was organized. This publication is the executive summary of this event. Overall, 38 invited participants from industry, academia, and research institutions have discussed the specific topic of this first 3 day workshop, i.e ”Aircraft Noise Reduction at the Source”. Four specific tasks were formulated in order to address the problem, i.e. (1) identification of main aircraft noise sources on-board of a given reference vehicle, (2) assessment of simulation capabilities for noise prediction, (3) identification and assessment of promising noise reduction concepts for the reference vehicle, and (4) integration of these measures on-board of the reference vehicle. The major noise sources on-board of the reference vehicle as identified by the participants could have been reduced significantly if selected measures are installed on-board. These proposed measures promise to reduce the system noise by 8 dB along a take-off and by 10 dB along an approach flight. Yet, the almost 65% reduction in perceived noise as specified by ACARE’s Flight Path 2050 could not be achieved. The most effective measure has been identified as structural shielding of engine noise emission

    Vorlesung: Advanced aircraft noise modelling and measurements, AE4463

    No full text
    Course “Advanced Aircraft Noise Modelling And Measurements“ (AE4463) for the Section Aircraft Noise and Climate Effects, Department for Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology
    • 

    corecore