143 research outputs found

    Dendritic Cell Subsets are Key Regulators in the Immune System

    Get PDF
    Dendritic cells (DCs) are the masters of command of innate and adaptive immunity. First, through their capacity to release cytokines and chemokines necessary to kill an invading microbe and attract/stimulate other cells involved in innate immunity, like neutrophils and macrophages. Secondly, through their capacity to take up and process antigen in antigen exposed areas, and present it in an immunogenic form to naive T cells after migration to the central lymphoid organs. However, in steady state DCs also play a crucial role in regulating the immune response to self-antigens

    Cellular networks controlling Th2 polarization in allergy and immunity

    Get PDF
    In contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in which mucosal epithelial cells instruct dendritic cells to promote Th2 responses in the absence of IL-12 (interleukin 12) production and provide instruction through thymic stromal lymphopoieitin (TSLP) or granulocyte-macrophage colony stimulating factor (GM-CSF). At the same time, allergens, helminths and chemical adjuvants elicit the response of innate immune cells like basophils, which provide more polarizing cytokines and IL-4 and reinforce Th2 immunity. This unique communication between cells will only be fully appreciated if we study Th2 immunity in vivo and in a tissue-specific context, and can only be fully understood if we compare several models of Th2 immune response induction

    Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells

    Get PDF
    Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D2 binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3+ CD4+ regulatory T cells that suppressed inflammation in an interleukin 10–dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP–dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma

    The Balance between Plasmacytoid DC versus Conventional DC Determines Pulmonary Immunity to Virus Infections

    Get PDF
    Background: Respiratory syncytial virus (RSV) infects nearly all infants by age 2 and is a leading cause of broncialitis. RSV may employ several mechanisms to induce immune dysregulation, including dentritic cell (DC) modulation during the immune response to RSV. Methods and Findings: Expansion of cDC and pDC by Flt3L treatment promoted an anti-viral response with reduced pathophysiology characterized by decreased airway hyperreactivity, reduced Th2 cytokines, increased Th1 cytokines, and a reduction in airway inflammation and mucus overexpression. These protective aspects of DC expansion could be completely reversed by depleting pDCs during the RSV infections. Expansion of DCs by Flt3L treatment enhanced in CD8+ T cell responses, which was reversed by depletion of pDC. Conclusions: These results indicate that a balance between cDC and pDC in the lung and its lymph nodes is crucial for the outcome of a pulmonary infection. Increased pDC numbers induced by Flt3L treatment have a protective impact on the nature of the overall immune environment

    Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells

    Get PDF
    Alum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node (LN)–resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection of alum, Ag was taken up, processed, and presented by inflammatory monocytes that migrated from the peritoneum, thus becoming inflammatory DCs that induced a persistent Th2 response. The enhancing effects of alum on both cellular and humoral immunity were completely abolished when CD11c+ monocytes and DCs were conditionally depleted during immunization. Mechanistically, DC-driven responses were abolished in MyD88-deficient mice and after uricase treatment, implying the induction of uric acid. These findings suggest that alum adjuvant is immunogenic by exploiting “nature's adjuvant,” the inflammatory DC through induction of the endogenous danger signal uric acid

    Circulating T cells in sarcoidosis have an aberrantly activated phenotype that correlates with disease outcome

    Get PDF
    Rationale: Disease course in sarcoidosis is highly variable. Bronchoalveolar lavage fluid and mediastinal lymph nodes show accumulation of activated T cells with a T-helper (Th)17.1 signature, which correlates with non-resolving sarcoidosis. We hypothesize that the peripheral blood (PB) T cell phenotype may correlate with outcome. Objectives: To compare frequencies, phenotypes and function of circulating T cell populations in sarcoidosis patients with healthy controls (HCs) and correlate these parameters with outcome. Methods: We used multi-color flow cytometry to quantify activation marker expression on PB T cell subsets in treatment-naïve patients and HCs. The disease course was determined after 2-year follow-up. Cytokine production was measured after T cell stimulation in vitro. Measurements and main results: We observed significant differences between patients and HCs in several T cell populations, including CD8+ and CD4+ T cells, Th1/Th17 subsets, CD4+ T memory stem cells, regulatory T cells (Tregs) and γδ T cells. Decreased frequencies of CD4+ T cells and increased frequencies of Tregs and CD8+ γδ T cells correlated with worse outcome. Naïve CD4+ T cells displayed an activated phenotype with increased CD25 expression in patients with active chronic disease at 2-year follow-up. A distinctive Treg phenotype with increased expression of CD25, CTLA4, CD69, PD-1 and CD95 correlated with chronic sarcoidosis. Upon stimulation, both naïve and memory T cells displayed a different cytokine profile in sarcoidosis compared to HCs. Conclusions: Circulating T cell subpopulations of sarcoidosis patients display phenotypic abnormalities that correlate with disease outcome, supporting a critical role of aberrant T cell activation in sarcoidosis pathogenesis.</p

    Tnfaip3 expression in pulmonary conventional type 1 Langerin‐expressing dendritic cells regulates T helper 2‐mediated airway inflammation in mice

    Get PDF
    BACKGROUND: Conventional type 1 dendritic cells (cDC1s) control antiviral and antitumor immunity by inducing antigen-specific cytotoxic CD8+ T-cell responses. Controversy exists whether cDC1s also control CD4+ T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF-κB, might determine the precise outcome of Th-cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2-driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF-κB signaling METHODS: To target pulmonary cDC1s, Cd207 (Langerin)-mediated excision of A20/Tnfaip3 was used, generating Tnfaip3fl/fl xCd207+/cre (Tnfaip3Lg-KO ) mice. Mice were exposed to house dust mite (HDM) to provoke Th2-mediated immune responses. RESULTS: Mice harboring Tnfaip3-deficient cDC1s did not develop Th2-driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ-expressing CD8+ T-cells. In addition, Tnfaip3Lg-KO mice harbored increased numbers of IL-12-expressing cDC1s and elevated PD-L1 expression in all pulmonary DC subsets. Blocking either IL-12 or IFNγ in Tnfaip3Lg-KO mice restored Th2-responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2-development. CONCLUSIONS: These findings indicate that the activation status of cDC1s, shown by their specific expression of co-inhibitory molecules and cytokines, critically contributes to the development of Th2-cell-mediated disorders, most likely by influencing IFNγ production in CD8+ T-cells

    A20-Deficient Mast Cells Exacerbate Inflammatory Responses In Vivo

    Get PDF
    Mast cells are implicated in the pathogenesis of inflammatory and autoimmune diseases. However, this notion based on studies in mast cell-deficient mice is controversial. We therefore established an in vivo model for hyperactive mast cells by specifically ablating the NF-kappa B negative feedback regulator A20. While A20 deficiency did not affect mast cell degranulation, it resulted in amplified pro-inflammatory responses downstream of IgE/Fc epsilon RI, TLRs, IL-1R, and IL-33R. As a consequence house dust mite- and IL-33-driven lung inflammation, late phase cutaneous anaphylaxis, and collagen-induced arthritis were aggravated, in contrast to experimental autoimmune encephalomyelitis and immediate anaphylaxis. Our results provide in vivo evidence that hyperactive mast cells can exacerbate inflammatory disorders and define diseases that might benefit from therapeutic intervention with mast cell function

    Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis

    Get PDF
    Rationale Idiopathic Pulmonary Fibrosis (IPF) is thought to be triggered by repeated alveolar epithelial cell injury. Current evidence suggests that aberrant immune activation may contribute. However, the role of B-cell activation remains unclear. We determined the phenotype and activation status of B-cell subsets and evaluated the contribution of activated B-cells to the development of lung fibrosis both in humans and in mice. Methods B-cells in blood, mediastinal lymph node, and lung single-cell suspensions of IPF patients and healthy controls (HC) were characterized using 14-color flow cytometry. Mice were exposed to bleomycin to provoke pulmonary fibrosis. Results More IgA(+) memory B-cells and plasmablasts were found in blood (n = 27) and lungs (n = 11) of IPF patients compared to HC (n = 21) and control lungs (n = 9). IPF patients had higher levels of autoreactive IgA in plasma, which correlated with an enhanced decline of forced vital capacity (p = 0.002, r = - 0.50). Bruton's tyrosine kinase expression was higher in circulating IPF B-cells compared to HC, indicating enhanced B-cell activation. Bleomycin-exposed mice had increased pulmonary IgA(+) germinal center and plasma cell proportions compared to control mice. The degree of lung fibrosis correlated with pulmonary germinal center B-cell proportions (p = 0.010, r = 0.88). Conclusion Our study demonstrates that IPF patients have more circulating activated B-cells and autoreactive IgA, which correlate with disease progression. These B-cell alterations were also observed in the widely used mouse model of experimental pulmonary fibrosis. Autoreactive IgA could be useful as a biomarker for disease progression in IPF.</p
    corecore