68 research outputs found

    Role of the Rostral Ventrolateral Medulla in the Arterial Hypertension in Chronic Renal Failure

    Get PDF
    Sympathetic activation in chronic renal failure (CRF) is a major mechanism leading to the progression of renal disease and hypertension. In the present study, we tested the hypothesis that in CRF increased reactive oxygen species (ROS) production in the RVLM mediated by enhanced circulating Angiotensin II (Ang II) is an important mechanism leading to hypertension in CRF. In CRF rats we found an increase in the abundance of p47phox and gp91phox mRNA within the RVLM associated with a reduction of Ang II type 1 receptors (AT1) mRNA in the brainstem compared to controls (C). Tempol but not candesartan into the RVLM decreased MAP in CRF but not in C rats. GABA into the RVLM decreased MAP in CRF (63 ± 8 mmHg) more intensely than in C (33 ± 3 mmHg). The results suggest that increased oxidative stress within the RVLM has an important participation to maintain hypertension in CRF rats apparently independently of AT1 Ang II receptors

    Mesenchymal stem cells (MSC) prevented the progression of renovascular hypertension, improved renal function and architecture

    Get PDF
    Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.Coordenação de Aperfeiçoamento de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Receptor-Induced Dilatation in the Systemic and Intrarenal Adaptation to Pregnancy in Rats

    Get PDF
    Normal pregnancy is associated with systemic and intrarenal vasodilatation resulting in an increased glomerular filtration rate. This adaptive response occurs in spite of elevated circulating levels of angiotensin II (Ang II). In the present study, we evaluated the potential mechanisms responsible for this adaptation. The reactivity of the mesangial cells (MCs) cultured from 14-day-pregnant rats to Ang II was measured through changes in the intracellular calcium concentration ([Cai]). The expression levels of inducible nitric oxide synthase (iNOS), the Ang II-induced vasodilatation receptor AT2, and the relaxin (LGR7) receptor were evaluated in cultured MCs and in the aorta, renal artery and kidney cortex by real time-PCR. The intrarenal distribution of LGR7 was further analyzed by immunohistochemistry. The MCs displayed a relative insensitivity to Ang II, which was paralleled by an impressive increase in the expression level of iNOS, AT2 and LGR7. These results suggest that the MCs also adapt to the pregnancy, thereby contributing to the maintenance of the glomerular surface area even in the presence of high levels of Ang II. The mRNA expression levels of AT2 and LGR7 also increased in the aorta, renal artery and kidney of the pregnant animals, whereas the expression of the AT1 did not significantly change. This further suggests a role of these vasodilatation-induced receptors in the systemic and intrarenal adaptation during pregnancy. LGR7 was localized in the glomeruli and on the apical membrane of the tubular cells, with stronger labeling in the kidneys of pregnant rats. These results suggest a role of iNOS, AT2, and LGR7 in the systemic vasodilatation and intrarenal adaptation to pregnancy and also suggest a pivotal role for relaxin in the tubular function during gestation

    Untitled

    No full text
    Universidade Federal de São Paulo, Div Renal, São Paulo, BrazilUniversidade Federal de São Paulo, Div Renal, São Paulo, BrazilWeb of Scienc

    Letter to the Editor

    No full text

    Diversity of pathways for intracellular angiotensin II synthesis

    No full text
    Purpose of reviewThe renin-angiotensin system (RAS) has undergone continuous advancement since the initial identification of renin as a pressor agent. Traditionally considered a circulatory system, the RAS is now known to exist as a tissue system as well. Recently, the tissue RAS has been further categorized as intracellular and extracellular. Owing to the unique location, the intracellular RAS encompasses new components, such as cathepsin D and chymase, which participate in intracellular angiotensin (Ang) II synthesis. in this review, evidence of the intracellular RAS and the mechanism of Ang II synthesis in various cell types will be discussed.Recent findingsA physiological role for intracellular Ang II in vascular and cardiac cells has recently been demonstrated. Evidence of intracellular Ang II generation has been shown in several cell types, particularly cardiac, renal, and vascular. Importantly, intracellular synthesis of Ang II is more prominent in hyperglycemic conditions and generally involves angiotensin-converting enzyme-dependent and angiotensin-converting enzyme-independent mechanisms,SummaryThere is significant diversity in the mechanism of intracellular synthesis of Ang II in various cell types and pathological conditions. These observations suggest that a therapeutic intervention to block the RAS should take into consideration the nature of the disorder and the cell type involved.Texas A&M Hlth Sci Ctr, Coll Med, Dept Med, Div Mol Cardiol, Temple, TX 76504 USAScott & White Mem Hosp & Clin, Temple, TX USACent Texas Vet Healthcare Syst, Temple, TX USAUniversidade Federal de São Paulo, Dept Med, Div Renal, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Med, Div Renal, São Paulo, BrazilWeb of Scienc

    Hemodinâmica glomerular renal no roedor Calomys callosus

    No full text
    A função renal do roedor Calomys callosus, envolvido no ciclo de transmissão de diversos agentes patogênicos para o homem foi avaliada no animal intacto, através da técnica de depuração e micropunção renal. Os resultados mostraram que este roedor apresenta níveis pressóricos, hematócrito e proteinas plasmáticas semelhantes aos dos ratos submetidos ao mesmo procedimento experimental. Os pesos corporal e renal, bem como a filtração glomerular global e por nefro assemelham-se aos do camundongo. Surpreendentemente estes roedores apresentaram significante número de glomérulos superficiais por rim, permitindo a avaliação da hemodinàmica glomerular. Apesar da pressão arterial semelhante à dos ratos Munich-Wistar (MW), a pressão hidráulica intraglomerular no Calomys callosus foi inferior. Esta redução foi conseqüente à menor resistência pós-glomerular quando comparada à dos ratos MW. O fluxo plasmático glomerular atingiu valor bastante elevado em relação à filtração glomerular por nefro, fato que não só compensaria a reduzida pressão intraglomerular, como também seria suficiente para elevar a filtração (por g/rim) a níveis superiores neste roedor, pois o coeficiente de ultrafiltração glomerular (Kj) foi semelhante ao do rato MW. O presente trabalho sugere que apesar das dificuldades técnicas que este animal impõe devido ao seu reduzido tamanho, o estudo da função renal global bem como da hemodinàmica glomerular é factível, podendo portanto ser utilizado como modelo para estudo da função renal em doenças tropicais
    corecore