80 research outputs found

    Emerging themes in SecA2-mediated protein export

    Get PDF
    The conserved general secretion (Sec) pathway carries out most protein export in bacteria and is powered by the essential SecA ATPase. Interestingly, mycobacteria and some Gram positive bacteria possess two SecA proteins: SecA1 and SecA2. In these species, SecA1 is responsible for exporting the majority of proteins whereas SecA2 exports only a subset of substrates and is implicated in virulence. However, despite the impressive body of knowledge on the canonical SecA (SecA1), less is known concerning SecA2 function. Here, we review our current understanding of the different types of SecA2 systems and outline future directions for SecA2 studies

    A new twist on an old pathway – accessory secretion systems

    Get PDF
    The export of proteins from their site of synthesis in the cytoplasm across the inner membrane is an important aspect of bacterial physiology. Because the location of extracytoplasmic proteins is ideal for host-pathogen interactions, protein export is also important to bacterial virulence. In bacteria there are conserved protein export systems that are responsible for the majority of protein export: the general secretion (Sec) pathway and the twin-arginine translocation (Tat) pathway. In some bacteria, there are also specialized export systems dedicated to exporting specific subsets of proteins. In this review, we discuss a specialized export system that exists in some Gram-positive bacteria and mycobacteria – the accessory Sec system. The common element to the accessory Sec system is an accessory SecA protein called SecA2. Here we present our current understanding of accessory Sec systems in Streptococcus gordonii, Streptococcus parasanguinis, Mycobacterium smegmatis, Mycobacterium tuberculosis, and Listeria monocytogenes, making an effort to highlight apparent similarities and differences between the systems. We also review the data showing that accessory Sec systems can contribute to bacterial virulence

    Protein export systems of Mycobacterium tuberculosis : novel targets for drug development?

    Get PDF
    Protein export is essential in all bacteria and many bacterial pathogens depend on specialized protein export systems for virulence. In Mycobacterium tuberculosis, the etiological agent of the disease tuberculosis, the conserved general secretion (Sec) and twin-arginine translocation (Tat) pathways perform the bulk of protein export and are both essential. M. tuberculosis also has specialized export pathways that transport specific subsets of proteins. One such pathway is the accessory SecA2 system, which is important for M. tuberculosis virulence. There are also specialized ESX export systems that function in virulence (ESX-1) or essential physiologic processes (ESX-3). The increasing prevalence of drug-resistant M. tuberculosis strains makes the development of novel drugs for tuberculosis an urgent priority. In this article, we discuss our current understanding of the protein export systems of M. tuberculosis and consider the potential of these pathways to be novel targets for tuberculosis drugs

    The ins and outs of Mycobacterium tuberculosis protein export

    Get PDF
    Mycobacterium tuberculosis is an important pathogen that infects approximately one third of the world’s population and kills almost two million people annually. An important aspect of M. tuberculosis physiology and pathogenesis is its ability to export proteins into and across the thick mycobacterial cell envelope, where they are ideally positioned to interact with the host. In addition to the specific proteins that are exported by M. tuberculosis, the systems through which these proteins are exported represent potential targets for future drug development. M. tuberculosis possesses two well-known and conserved export systems: the housekeeping Sec pathway and the Tat pathway. In addition, M. tuberculosis possesses specialized export systems including the accessory SecA2 pathway and five ESX pathways. Here we review the current understanding of each of these export systems, with a focus on M. tuberculosis, and discuss the contribution of each system to disease and physiology

    Structural Similarities and Differences between Two Functionally Distinct SecA Proteins, Mycobacterium tuberculosis SecA1 and SecA2

    Get PDF
    While SecA is the ATPase component of the major bacterial secretory (Sec) system, mycobacteria and some Gram-positive pathogens have a second paralog, SecA2. In bacteria with two SecA paralogs, each SecA is functionally distinct, and they cannot compensate for one another. Compared to SecA1, SecA2 exports a distinct and smaller set of substrates, some of which have roles in virulence. In the mycobacterial system, some SecA2-dependent substrates lack a signal peptide, while others contain a signal peptide but possess features in the mature protein that necessitate a role for SecA2 in their export. It is unclear how SecA2 functions in protein export, and one open question is whether SecA2 works with the canonical SecYEG channel to export proteins. In this study, we report the structure of Mycobacterium tuberculosis SecA2 (MtbSecA2), which is the first structure of any SecA2 protein. A high level of structural similarity is observed between SecA2 and SecA1. The major structural difference is the absence of the helical wing domain, which is likely to play a role in how MtbSecA2 recognizes its unique substrates. Importantly, structural features critical to the interaction between SecA1 and SecYEG are preserved in SecA2. Furthermore, suppressor mutations of a dominant-negative secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG or the translocating polypeptide substrate. These results support a model in which the mycobacterial SecA2 works with SecYEG. IMPORTANCE SecA2 is a paralog of SecA1, which is the ATPase of the canonical bacterial Sec secretion system. SecA2 has a nonredundant function with SecA1, and SecA2 exports a distinct and smaller set of substrates than SecA1. This work reports the crystal structure of SecA2 of Mycobacterium tuberculosis (the first SecA2 structure reported for any organism). Many of the structural features of SecA1 are conserved in the SecA2 structure, including putative contacts with the SecYEG channel. Several structural differences are also identified that could relate to the unique function and selectivity of SecA2. Suppressor mutations of a secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG

    Comparison of the Membrane Proteome of Virulent Mycobacterium tuberculosis and the Attenuated Mycobacterium bovis BCG Vaccine Strain by Label-Free Quantitative Proteomics

    Get PDF
    The Mycobacterium tuberculosis (MTB) membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative (LFQ) proteomics, utilizing the area-under-curve (AUC) of the extracted ion chromatograms (XIC) of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2,203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least 2 fold, in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge we have generated the first comprehensive and high coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen

    Tat–Dependent Translocation of an F420–Binding Protein of Mycobacterium tuberculosis

    Get PDF
    F420 is a unique cofactor present in a restricted range of microorganisms, including mycobacteria. It has been proposed that F420 has an important role in the oxidoreductive reactions of Mycobacterium tuberculosis, possibly associated with anaerobic survival and persistence. The protein encoded by Rv0132c has a predicted N–terminal signal sequence and is annotated as an F420–dependent glucose-6-phosphate dehydrogenase. Here we show that Rv0132c protein does not have the annotated activity. It does, however, co–purify with F420 during expression experiments in M. smegmatis. We also show that the Rv0132c–F420 complex is a substrate for the Tat pathway, which mediates translocation of the complex across the cytoplasmic membrane, where Rv0132c is anchored to the cell envelope. This is the first report of any F420–binding protein being a substrate for the Tat pathway and of the presence of F420 outside of the cytosol in any F420–producing microorganism. The Rv0132c protein and its Tat export sequence are essentially invariant in the Mycobacterium tuberculosis complex. Taken together, these results show that current understanding of F420 biology in mycobacteria should be expanded to include activities occurring in the extra-cytoplasmic cell envelope

    The CATERPILLER protein Monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor α-, and Mycobacterium tuberculosis-induced pro-inflammatory signals

    Get PDF
    The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) α and Mycobacterium tuberculosis. Monarch-1 reduces NFκB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFκB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFκB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFα, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation

    Label-free Quantitative Proteomics Reveals a Role for the Mycobacterium tuberculosis SecA2 Pathway in Exporting Solute Binding Proteins and Mce Transporters to the Cell Wall

    Get PDF
    Mycobacterium tuberculosis is an example of a bacterial pathogen with a specialized SecA2-dependent protein export system that contributes to its virulence. Our understanding of the mechanistic basis of SecA2-dependent export and the role(s) of the SecA2 pathway in M. tuberculosis pathogenesis has been hindered by our limited knowledge of the proteins exported by the pathway. Here, we set out to identify M. tuberculosis proteins that use the SecA2 pathway for their export from the bacterial cytoplasm to the cell wall. Using label-free quantitative proteomics involving spectral counting, we compared the cell wall and cytoplasmic proteomes of wild type M. tuberculosis to that of a ΔsecA2 mutant. This work revealed a role for the M. tuberculosis SecA2 pathway in the cell wall localization of solute binding proteins that work with ABC transporters to import solutes. Another discovery was a profound effect of SecA2 on the cell wall localization of the Mce1 and Mce4 lipid transporters, which contribute to M. tuberculosis virulence. In addition to the effects on solute binding proteins and Mce transporter export, our label-free quantitative analysis revealed an unexpected relationship between SecA2 and the hypoxia-induced DosR regulon, which is associated with M. tuberculosis latency. Nearly half of the transcriptionally controlled DosR regulon of cytoplasmic proteins were detected at higher levels in the ΔsecA2 mutant versus wild type M. tuberculosis. By increasing the list of M. tuberculosis proteins known to be affected by the SecA2 pathway, this study expands our appreciation of the types of proteins exported by this pathway and guides our understanding of the mechanism of SecA2-dependent protein export in mycobacteria. At the same time, the newly identified SecA2-dependent proteins are helpful for understanding the significance of this pathway to M. tuberculosis virulence and physiology

    Pulmonary Immunization Using Antigen 85-B Polymeric Microparticles to Boost Tuberculosis Immunity

    Get PDF
    This study aims to evaluate immunization with polymeric microparticles containing recombinant antigen 85B (rAg85B) delivered directly to the lungs to protect against tuberculosis. rAg85B was expressed in Escherichia coli and encapsulated in poly(lactic-co-glycolic acid) microparticles (P-rAg85B). These were delivered as dry powders to the lungs of guinea pigs in single or multiple doses of homologous and heterologous antigens. Bacille Calmette-Guérin (BCG) delivered subcutaneously was employed as the positive control and as part of immunization strategies. Immunized animals were challenged with a low-dose aerosol of Mycobacterium tuberculosis (MTB) H37Rv to assess the extent of protection measured as reduction in bacterial burden (CFU) in the lungs and spleens of guinea pigs. Histopathological examination and morphometric analysis of these tissues were also performed. The heterologous strategy of BCG prime-P-rAg85B aerosol boosts appeared to enhance protection from bacterial infection, as indicated by a reduction in CFU in both the lungs and spleens compared with untreated controls. Although the CFU data were not statistically different from the BCG and BCG-BCG groups, the histopathological and morphometric analyses indicated the positive effect of BCG-P-rAg85B in terms of differences in area of tissue affected and number and size of granulomas observed in tissues. P-rAg85B microparticles appeared to be effective in boosting a primary BCG immunization against MTB infection, as indicated by histopathology and morphometric analysis. These encouraging observations are relevant to boosting adults previously immunized with BCG or exposed to MTB, commonly the case in the developing world, and should be followed by further assessment of an appropriate immunization protocol for maximum protection
    • …
    corecore