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Abstract

The conserved general secretion (Sec) pathway carries out most protein export in bacteria and is 

powered by the essential SecA ATPase. Interestingly, mycobacteria and some Gram positive 

bacteria possess two SecA proteins: SecA1 and SecA2. In these species, SecA1 is responsible for 

exporting the majority of proteins whereas SecA2 exports only a subset of substrates and is 

implicated in virulence. However, despite the impressive body of knowledge on the canonical 

SecA (SecA1), less is known concerning SecA2 function. Here, we review our current 

understanding of the different types of SecA2 systems and outline future directions for SecA2 

studies.

Introduction

All bacteria have systems for exporting specific proteins out of the cytoplasm and into the 

cell envelope or extracellular environment, where they have roles in cell wall synthesis, 

nutrient acquisition, and other vital physiological processes. In bacterial pathogens, exported 

proteins also play critical roles in virulence. Most exported proteins are translocated across 

the cytoplasmic membrane by the conserved general secretion (Sec) pathway1, which is 

present in all bacteria and is essential for viability.

The Sec pathway translocates unfolded proteins through a protein complex in the 

cytoplasmic membrane comprised of SecY, SecE, and SecG proteins. SecY forms the 

channel through which unfolded proteins pass2. SecE is thought to stabilize the open SecY 

conformation necessary for translocation3–6 while SecG increases export efficiency7, 8. The 

SecYEG channel is used in two types of Sec export: post-translational and co-translational. 

In post-translational Sec export, which is the focus of this review, proteins translocate 

completely across the cytoplasmic membrane through SecYEG. In co-translational export, 

SecYEG works with the signal recognition particle (SRP) to insert integral membrane 

proteins into the cytoplasmic membrane9 or, in some cases, translocate proteins across the 

cytoplasmic membrane10. For integral membrane proteins, SRP recognizes transmembrane 

domains as they emerge from the ribosome during translation and targets them as ribosome-

mRNA-nascent protein complexes to FtsY for delivery to SecYEG11. A lateral gate in SecY 

is thought to then open and allow passage of transmembrane domains into the membrane12.
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In post-translational Sec export, the proteins destined for translocation across the 

cytoplasmic membrane are synthesized as preproteins that are distinguished from the larger 

pool of cytoplasmic proteins by the presence of N-terminal Sec signal peptides. Sec signal 

peptides have a positively charged N-terminus, hydrophobic core, and polar C-terminus 

containing a signal peptidase cleavage site13. In addition to the signal peptide, another 

requirement for Sec export is that the mature portion of the preprotein remains unfolded for 

competent passage through SecY. Some proteins are recognized and kept unfolded by 

cytoplasmic chaperones, such as SecB14, 15, although other preproteins may be unfolded as 

they are translocated16, 17.

A central component of the post-translational Sec pathway is the cytosolic SecA motor 

protein18, which has a vital role in targeting and powering preprotein transport through 

SecYEG19, 20. Since the discovery of SecA in 198121, Sec export has been the focus of 

extensive study. A combination of genetic, structural and biochemical studies including in 

vitro reconstitution have led to a relatively sophisticated understanding of the Sec pathway 

and SecA function in particular (Fig. 1a). SecA binds preproteins along a cleft that includes 

the SecA preprotein-crosslinking (PPXD) domain22–26, and targets them to the SecYEG 

complex in the membrane through interactions with SecY27, 28 and membrane 

phospholipids29. After delivery to SecYEG, the signal peptide of the preprotein inserts into 

SecY to stabilize an open SecY channel conformation30–32. SecA then undergoes cycles of 

conformational changes coupled to ATP-binding and hydrolysis to drive preproteins through 

the SecY channel20, 33. Several models have been proposed to explain how SecA powers 

preprotein insertion through SecY18. Nonetheless, most models propose that portions of 

SecA, including the IRA-1 (intramolecular regulator of ATP hydrolysis 1) two-helix finger, 

insert into SecY to promote forward preprotein motion through the channel. During or 

immediately following export, the signal peptide is removed by signal peptidases34 and the 

mature domain of the protein adopts a folded conformation.

SecA, SecY, and SecE all have essential roles in Sec export and are required for cell 

viabilty35, 36. The SecG component of SecYEG is not essential37 but increases translocation 

efficiency, possibly by stabilizing the SecY/E complex7 or assisting the conformational 

changes of SecA8. Other non-essential membrane-bound proteins that increase Sec export 

efficiency are SecD, SecF and YajC37–39.

SecA2

For years, it was thought that all bacterial species had a single SecA protein40. However, we 

now know that a number of bacteria possess two SecA homologs: SecA1 and SecA2. The 

first example of a second SecA was revealed by the Mycobacterium tuberculosis genome 

sequencing project41, 42. It is now recognized that two SecA proteins exist in all 

mycobacteria and a diverse, but small, set of Gram positive bacteria including Listeria, 

Staphylococcus, and some Streptococcus species43. In bacteria with two SecAs, the two 

proteins are not interchangeable and each SecA has unique functions42, 44. SecA1 is the 

name given to the SecA with higher sequence similarity to the well-studied SecA proteins of 

Escherichia coli and Bacillus subtilis. SecA1 is essential and is responsible for canonical 

Sec export, as described above42, 45–48. Unlike SecA1, SecA2 is responsible for exporting a 
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smaller set of proteins and often dispensable. Notably, proteins exported by SecA2 are 

linked to virulence in many bacterial pathogens including M. tuberculosis49–51, 

Streptococcus gordonii52, Streptococcus parasanguinis53, Staphylococcus aureus54, and 

Listeria monocytogenes55.

Currently, there are two types of SecA2 systems known to exist. Some bacteria with a 

SecA2 also have an accessory SecY2 protein. As a consequence, these SecA2/SecY2 

systems appear to function largely independent of the canonical Sec machinery to export a 

set of proteins that are highly glycosylated and incompatible with the canonical SecA1/

SecYEG56, 57 (Fig. 1b). There are also SecA2-only systems, so named because they lack a 

SecY2 or an obvious accessory membrane channel. SecA2-only systems likely function as 

part of the canonical Sec pathway, utilizing SecYEG45, 47 (Fig. 1c). Furthermore, the 

repertoire of proteins exported by SecA2-only systems is more diverse than that of SecA2/

SecY2 systems.

While several published crystal structures for SecA (SecA1) proteins exist56, including those 

of M. tuberculosis57, B. subtilis58 and E. coli59, there is no structure available for any SecA2 

protein. However, sequence alignments and structural modeling predict that most domains, 

including PPXD and IRA-1 mentioned above, are conserved between SecA (SecA1) and 

SecA2 (Fig 2). In addition, all SecA2 proteins have two nucleotide-binding domains (NBD1 

and NBD2) which together constitute the DEAD (Asp-Glu-Ala-Asp)-like motor domain. 

The motor domain contains two ATP-binding Walker boxes and is responsible for ATP 

hydrolysis58, 60, 61, suggesting that SecA2 proteins are functional ATPases. In fact, SecA2 

from S. gordonii44 and M. tuberculosis62 have demonstrated endogenous ATPase activity in 

vitro. Furthermore, SecA2 ATPase activity is shown to be required for accessory SecA2 

protein export in mycobacteria and C. difficile45, 47, 62.

Even though SecA2 proteins of SecA2/SecY2 and SecA2-only systems likely function 

differently, it is interesting that all SecA2 proteins are smaller than their SecA1 counterparts 

due to a carboxyl-terminal domain (CTD) truncation, although the boundary of this 

truncation varies (Fig. 2). In E. coli, portions of the SecA CTD binds phospholipids29, 

SecB63–67, and Zn+29, 66. One area of the CTD missing in all SecA2 proteins is the C-

terminal linker (CTL), which lies within the preprotein-binding cleft and in E. coli, has been 

shown to influence substrate binding23. In addition to the CTD truncation, the helical wing 

domain (HWD) is absent in the mycobacterial SecA2 and truncated in other SecA2 proteins. 

However, even in the canonical SecA1, the function of the HWD is not clear. The 

significance of the CTD and HWD truncations in SecA2 proteins awaits further studies.

Our understanding of the mechanisms of canonical Sec export is at an impressive level of 

detail1, but by comparison our understanding of accessory SecA2 export is limited. Here, we 

review the current state of knowledge of SecA2 systems and provide models for both the 

SecA2/SecY2 and SecA2-only pathways. We also discuss gaps in our knowledge of SecA2 

export and how these questions can be addressed by extending approaches used previously 

to study the general Sec pathway.
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SecA2/SecY2 systems

Bacteria with SecA2/SecY2 systems share a conserved secA2/secY2 genomic locus, 

comprised of a suite of similarly arranged homologous genes (Fig. 3a). In addition to genes 

encoding SecA2 and SecY2, each locus contains a gene that encodes a large serine-rich 

glycosylated protein that is exported by the SecA2/SecY2 system, as well as glycosylation 

factors that modify this substrate, and additional export machinery with unknown functions. 

The SecA2/SecY2 systems that are found in a subset of Gram positive species include 

pathogenic Streptococcus gordonii68, Streptococcus agalactiae69, Streptococcus 

parasanguinis70, Streptococcus pneuomoniae71, and Staphylococcus aureus72, although it 

should be noted that not all streptococcal species possess SecA2/SecY2 systems43. Another 

notable Gram positive pathogen with a putative SecA2/SecY2 pathway is Bacillus 

anthracis. However, the B. anthracis secA2 is phylogenetically more distant from those of 

Streptococcus and Staphylococcus43, which is also reflected by the dissimilar organization 

of the Bacillus secA2 locus (Fig. 3a). It will be interesting to determine if Bacillus SecA2/

SecY2 export functions in the same manner as the Streptococcus and Staphylococcus 

systems described here.

The current model of SecA2/SecY2 export suggests that these specialized systems exist to 

export the large serine-rich protein encoded in the secA2/secY2 locus. The serine-rich 

substrates have cleavable N-terminal signal peptides that are unusually long and mature 

domains that are heavily glycosylated43. Examples of experimentally confirmed SecA2/

SecY2-exported substrates include GspB of S. gordonii68, Fap1 of S. parasanguinis70, Srr1 

of S. agalactiae69, and SraP of S. aureus72. These substrates have roles related to bacterial 

adhesion to host tissues and/or biofilm formation53, 54, 68, 69, 73, 74. Consequently many of 

these exported glycoproteins, and presumably their respective SecA2/SecY2 systems, are 

required for virulence52, 54, 69, 71. In S. parasanguinis, the FimA adhesin is a second protein 

whose export is reported to depend on SecA270. However, FimA is not a serine-rich 

glycoprotein and the fimA gene is not at the S. parasanguinis secA2/secY2 locus. It is 

currently unknown whether FimA is a true SecA2/SecY2 substrate.

SecA2 is not essential for growth in these bacteria; however, SecA2 is absolutely required 

for export of their respective serine-rich substrates, suggesting a lack of functional 

redundancy with canonical SecA1. Mutations in secA2 abolish export of the serine-rich 

glycosylated substrates of S. gordonii68, S. parasanguinis70, S. agalactiae69, and S. 

aureus72. Below, we discuss other genes in the secA2/secY2 loci that have also been 

analyzed for roles in glycosylation and/or export.

Glycosylation factors of SecA2/SecY2 systems

In export-defective SecA2/SecY2 mutants, the serine-rich substrate retained in the 

cytoplasm is glycosylated70, 75 indicating that the protein is modified by cytoplasmic 

glycosylation factors prior to export70, 75. There are two core glycosyltransferases conserved 

in all SecA2/SecY2 systems, GtfA and GtfB (Gtf1 and Gtf2) (Fig. 3a). These enzymes are 

shown to be required for substrate glycosylation in S. gordonii76, S. agalactiae69, and S. 

parasanguinis77, 78, and in S. parasanguinis a Gtf1-Gtf2 interaction is required for substrate 

glycosylation77. Some SecA2/SecY2 systems include additional glycosylation factors that 
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further modify the substrate prior to export, including Gly and Nss of S. gordonii79, Nss 

(Gtf3) and GalT1-2 of S. parasanguinis80, 81, and the GtfC-GtfH proteins of S. agalactiae69. 

While not identical, the carbohydrate modifications on two SecA2/SecY2 exported proteins, 

Fap1 and GspB, are primarily composed of N-acetylglucosamine and glucose82, 83. In S. 

parasanguinis, Fap1 is modified by O-linked glycosylation83 but it is unclear if this type of 

linkage extends to the other SecA2/SecY2 substrates. Furthermore, while the sugar 

composition of the Fap1 and GspB glycoproteins is known, the number of linkage sites and 

structure of the glycosyl modifications remains unknown.

Export machinery of SecA2/SecY2 systems

In S. gordonii68 and S. aureus72, secY2 mutations result in a loss of substrate export that is 

equivalent to the export defect exhibited by secA2 mutations, demonstrating that SecY2 is 

essential for accessory SecA2/SecY2 export in these systems. However, in S. 

parasanguinis78, deletion of secY2 has only a modest effect on Fap1 export and the residual 

exported Fap1 species is incorrectly glycosylated78. This result suggests that in the absence 

of SecY2 and full glycosylation, Fap1 export defaults to the canonical SecA1/SecYEG 

pathway. This result also suggests that in the S. parasanguinis SecA2/SecY2 system, export 

and glycosylation of Fap1 are coupled (as discussed further below).

There are additional proteins encoded by secA2/secY2 loci that are referred to as accessory 

secretion proteins (Asps) in S. gordonii or glycosylation accessory proteins (Gaps) in S. 

parasanguinis. All SecA2/SecY2 systems include the Asp1, Asp2, and Asp3 proteins 

(Gap1- 3). While Asp1 and Asp3 are predicted cytosolic proteins, Asp2 may be membrane 

localized84. Some organisms, including S. gordonii, have the additional Asp4 and Asp5 

(Fig. 3a). Asp4 and Asp5 are both required for GspB export in S. gordonii85 and are 

predicted integral membrane proteins with sequence homology to B. subtilis SecE (17% 

identity) and SecG (15% identity), respectively. This sequence homology is intriguing, 

albeit limited, and suggests that Asp4 and Asp5 may be accessory components of a SecY2 

membrane channel. However, the exact role of Asp4 and Asp5 in export remains to be 

defined. Also unknown is whether there are functionally equivalent proteins in SecA2/

SecY2 systems lacking Asp4 and Asp5.

With regard to the role(s) of Asps 1–3, findings in different bacterial systems are not in 

complete agreement. In both S. aureus and S. gordonii, Asps 1–3 are clearly required for 

export of the respective serine-rich glycoproteins, SraP and GspB72, 79. Additionally, in a 

glycosyltransferase-deficient S. gordonii background, export of the non-glycosylated GspB 

variant is still compromised in asp1, asp2, and asp3 mutants, indicating a role in export that 

is independent glycosylation for these Asp proteins84. By contrast, deletion of either gap1 or 

gap3 in S. parasanguinis (the asp1 and asp3 homologs) has only a modest effect on export 

of Fap1, and the residual exported Fap1 protein has altered glycosylation86, 87. On the basis 

of this result, the Asp1 and Asp3 homologs of S. parasanguinis were named Gap1 and Gap3 

to reflect a proposed function in glycosylation. However, a secY2 deletion in S. 

parasanguinis results in a phenotype similar to that of the gap1 and gap3 mutants – export 

of an aberrantly glycosylated Fap178, 86, 87. It seems highly unlikely that SecY2 would have 

a direct role in protein glycosylation. Additionally, the S. gordonii and S. aureus studies of 
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Asp1-3 in SecA2/SecY2 export are compelling. It is possible that the discrepancy in S. 

parasanguinis results is because Fap1 glycosylation and export are highly coupled 

processes. In this case, export defects of gap1, gap3 and secY2 mutants78, 86, 87 would 

indirectly affect Fap1 glycosylation to such an extent that the resulting altered Fap1 species 

is then compatible for export by the canonical SecA1/SecYEG system. However, at this 

time, a more direct role for Gaps in glycosylation cannot be ruled out.

While currently there is no clear understanding of the function of any of the Asp proteins, a 

network of interactions between Asp1, Asp2, Asp3 and SecA2 has been mapped in S. 

gordonii84 and S. parasanguinis87–89. Asp3 may be a central scaffolding protein in this 

network as it interacts with multiple members of the SecA2/SecY2 system in S. gordonii 

including Asp1, Asp2, SecA2, and itself84. Interestingly, the S. gordonii Asp2 and Asp3 

proteins also bind the GspB substrate prior to its glycosylation, which suggests a possible 

function for these proteins in delivering the substrate to an export/glycosylation complex90. 

In S. parasanguinis, interactions between Gap1 (Asp1), Gap3 (Asp3), and SecA2 have also 

been identified87–89. In addition, it was recently reported that Gap1 of S. parasanguinis 

stabilizes Gap3 to allow efficient Fap1 export89.

Targeting proteins to the SecA2/SecY2 pathway

The serine-rich glycoproteins exported by SecA2/SecY2 systems have features that not only 

prevent their routing to the canonical SecA1/SecYEG pathway but promote their targeting to 

the SecA2/SecY2 pathway (Fig. 4). The characteristic glycosylation of these exported 

substrates is one such element69, 70, 75. In addition to being important for protein 

stability69, 91, glycosylation of these proteins also blocks their export by the canonical Sec 

pathway in both S. gordonii and S. parasanguinis91, 92. For example, in the absence of 

secA2, the canonical SecA1/SecYEG pathway can export a stable, truncated GspB variant 

that is non-glycosylated. However, a glycosylated GspB protein cannot utilize the canonical 

Sec pathway and instead requires SecA2/SecY2 for export91.

As mentioned above, SecA2/SecY2 serine-rich proteins are glycosylated in the cytoplasm 

prior to export. This is in contrast to many other glycosylated Sec substrates in bacteria93, 94, 

as well as the analogous eukaryotic Sec pathway where glycosylation occurs only after 

proteins are translocated from the cytosol into the endoplasmic reticulum lumen95. 

However, there is evidence that some bacterial proteins in addition to SecA2/SecY2 

substrates share the unusual property of being glycosylated prior to Sec export96–98, such as 

the HMW1 adhesin of Haemophilus influenzae96. But, there is likely a limit to the 

modifications that the SecA1/SecYEG system can handle, as the level and/or type of 

glycosylation of SecA2/SecY2 substrates appear incompatible with canonical Sec export. It 

will be interesting in the future to determine the degree and structure of glycosylation 

modifications that are incompatible with the SecA1/SecYEG. Additionally, it will be 

important to understand how these modifications are accommodated by SecA2/SecY2 

systems. One possibility is that the pore size of the SecY2 channel is larger than that of 

SecY199 to allow passage of proteins with large glycan branches. A structure of SecY2 

would be incredibly valuable for addressing these unknowns.
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In addition to glycosylation, there are other features of SecA2/SecY2 substrates that dictate 

export by the accessory SecA2 pathway. The distinctive long signal peptides of GspB, Fap1, 

and presumably other SecA2/SecY2 substrates, are absolutely required for export91, 92, 100. 

Furthermore, three glycine residues in the hydrophobic core of the GspB signal peptide 

promote SecA2/SecY2-dependent export100. However, these same glycine residues also act 

along with glycosylation to block export by the canonical SecA1100. The mechanisms by 

which these glycine residues act in preprotein targeting are currently unknown. Interestingly, 

these glycine residues are conserved in the signal peptides of most SecA2/SecY2 substrates 

and could represent a SecA2/SecY2-targeting element that is shared among diverse species.

Finally, there is also a region of approximately 20 amino acids at the start of the mature 

domain of GspB that is required for targeting this protein to the SecA2/SecY2 system101. 

Introduction of glycine residues into this region can disrupt this SecA2/SecY2-targeting 

domain, suggesting it may form an alpha-helix101. Currently, it is not known if this 

accessory Sec transport (AST) domain is a conserved feature of all SecA2/SecY2 substrates. 

However, the first 34 amino acids of the Fap1 mature domain are also required for SecA2-

dependent export92. In addition to targeting to the SecA2/SecY2 translocase, the AST 

domain may also stabilize an open SecY2 channel conformation101.

Model for SecA2/SecY2 export

The current model of SecA2/SecY2 export is as follows (Fig. 1b). The distinctive 

glycosylation of the serine-rich proteins of SecA2/SecY2 systems is incompatible with 

export via the canonical SecA1/SecYEG pathway and demands a specialized export system. 

In a signal peptide-dependent manner, the SecA2/SecY2 preproteins are targeted to the 

SecA2/SecY2 machinery91, 92, 100. Features of the mature domain, such as the AST101, may 

also be involved in targeting. In addition, Asp2 and Asp3 could contribute to translocase-

targeting by binding the unmodified substrate90.

Analogous to canonical Sec export, SecA2 likely uses cycles of ATP hydrolysis to drive 

unfolded, glycosylated preproteins through the SecY2 channel. In some bacteria, Asp4 and 

Asp5 may function like SecE and SecG, whereas SecA2/SecY2 systems lacking Asp4 and 

Asp5 could utilize the canonical SecE or SecG for export. In fact, there is some genetic 

evidence that SecY2 and SecG may function together in S. aureus102. Also akin to canonical 

Sec export, experiments using a slow-folding model protein suggest that SecA2/SecY2 

preproteins must remain unfolded for passage through the SecY2 channel101.

At this time, there remain many unknowns regarding the mechanism of SecA2/SecY2 export 

and glycosylation. What is the sequence of preprotein interactions among the SecA2/SecY2 

export and glycosylation machinery? Are glycosylation and export coupled? What are the 

features of SecA2/SecY2 glycosylation that necessitate export by the SecA2/SecY2 system? 

Does SecA2 function in targeting and/or translocation across the membrane? What is the 

role of each Asp protein, and do these roles vary among SecA2/SecY2 systems of different 

bacteria? In vitro glycosylation and translocation systems would help address questions 

about this new type of export system.
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SecA2-only systems

Bacteria with SecA2-only systems lack a SecY2 homolog or obvious accessory membrane 

channel. The emerging model is that the SecA2 proteins of these systems work with the 

canonical SecA1/SecYEG translocase. Unlike secA2/secY2 loci, there is no conservation of 

gene content or organization at the secA2 genomic region for SecA2-only systems (Fig. 3b). 

In addition, there is a greater variety in the types of proteins exported by SecA2-only 

systems when compared to the category of glycosylated serine-rich proteins exported by 

SecA2/SecY2 systems. SecA2-only systems exist in all mycobacteria, including the human 

pathogen M. tuberculosis42, as well as some Gram positive bacteria such as L. 

monocytogenes103, Corynebacterium glutamicum48, and Clostridium difficile47.

In mycobacteria42, 49, 104 and Listeria103, 105–108, SecA2 is not essential for growth in liquid 

media and secA2 mutants are defective in the export of specific proteins. However, secA2 

mutants of both M. tuberculosis and L. monocytogenes are attenuated for growth in infection 

models, indicating the importance of the respective SecA2 systems for exporting virulence 

factors49, 50, 55. Additionally, secA2 mutants of both M. tuberculosis and L. monocytogenes 

elicit aberrant immune responses during infection, which has led to the use of these mutants 

in vaccination studies50, 109–111. By contrast, SecA2 is essential for growth of 

Corynebacterium glutamicum48, and Clostridium difficile47.

SecA2-only exported substrates

Proteins exported by SecA2-only systems have been identified in the model organism M. 

smegmatis (a nonpathogenic mycobacterial species), M. tuberculosis, L. monocytogenes, and 

C. difficile. Some of these proteins have predicted N-terminal Sec signal peptides and some 

do not. In M. smegmatis there are two lipoproteins (Ms1704 and Ms1712) with predicted N-

terminal Sec signal peptides that are exported to the cell wall in a SecA2-dependent 

manner45, 112. Ms1704 and Ms1712 are homologous and both are predicted ABC type 

sugar-binding proteins of putative ABC transporters112. However, it is important to note that 

not all mycobacterial lipoproteins require SecA2 for export112.

In M. tuberculosis and L. monocytogenes, several proteins are reduced in exported fractions 

of secA2 mutant bacteria analyzed by 2D-PAGE, 3 and 17 respectively49, 55. Of these 

proteins, only a few have been studied further and confirmed to be SecA2-dependent. In M. 

tuberculosis, one of these proteins is superoxide dismutase SodA, which notably lacks a 

predicted cleavable Sec signal peptide. There are likely additional SecA2-dependent proteins 

in M. tuberculosis because SecA2 is required to block phagosome maturation and the 

SecA2-dependent effectors of this process are unknown51.

In L. monocytogenes the p60 autolysin, which is a cell wall hydrolase that cleaves 

peptidoglycan, is a confirmed SecA2 substrate55. The gene for p60 is positioned adjacent to 

secA2 in the genome (Fig. 3b); although, other SecA2-dependent proteins of Listeria are 

encoded elsewhere. An additional peptidoglycan-hydrolyzing autolysin NamA (MurA) of 

Listeria is also SecA2-dependent55, 106, 107. However, unlike p60, NamA lacks a typical Sec 

signal peptide. MnSod superoxide dismutase is another protein lacking a predicted Sec 

signal peptide that is exported in a SecA2-dependent manner in L. monocytogenes113. This 
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particular finding parallels the SecA2-dependence of SodA export in M. tuberculosis and 

suggests that other similarities may exist between the mycobacteria and Listeria SecA2-only 

systems. Also among the list of SecA2-dependent proteins identified in L. monocytogenes 

are four predicted lipoproteins with Sec signal sequences55. One of these lipoproteins is a 

predicted ABC type sugar-binding protein55, which is in the same family as the Ms1704 and 

Ms1712 substrates of M. smegmatis112.

In C. difficile the S-layer protein SlpA,47 which constitutes a proteinaceous lattice structure 

surrounding the Clostridium cell114 has been identified as being exported in a SecA2-

dependent fashion. SlpA is a member of a larger family of 29 clostridial cell wall proteins 

(Cwp)115 that are implicated in host-pathogen interactions116–118. CwpV is another protein 

shown to require SecA2 for export47, suggesting that additional members of this Cwp family 

may be SecA2-dependent as well. In C. difficile, the secA2 gene is adjacent to slpA and the 

larger secA2 genomic region includes genes encoding 12 Cwps (Fig. 3b)47. However, the 

gene encoding CwpV is notably located elsewhere in the genome47. In C. difficile, both of 

the demonstrated SecA2-dependent proteins (SlpA and CwpV) contain predicted N-terminal 

Sec signal peptides115.

Export machinery of SecA2-only systems

SecA2-only systems lack an obvious alternative membrane channel and accessory export 

factors. An attractive idea is that SecA2 works with the canonical SecA1/SecYEG 

machinery either through cooperation with SecA1 or by sharing SecYEG. In support of this 

model, depletion of the essential SecA1 protein in M. smegmatis abolishes export of the 

SecA2 substrate Ms171245. The simplest interpretation of this experiment is that 

mycobacterial SecA2 export requires the canonical SecA1. However, it remains possible 

that SecA1 depletion in this experiment has an indirect effect on SecA2 export.

In mycobacteria and C. difficile, studies using ATPase-defective dominant negative SecA2 

proteins are also consistent with a model where SecA2 works with the canonical Sec 

machinery45, 47. Dominant negative proteins often exert their effect by forming 

nonfunctional complexes with their normal binding partners. In mycobacteria, 

overexpression of the dominant negative SecA2 inhibits growth45. This result implies an 

interaction between SecA2 and proteins important to an essential process, with the essential 

SecA1/SecYEG machinery being a leading candidate. In C. difficile, expression of the 

corresponding dominant negative SecA2 also inhibits growth and over shorter time frames is 

shown to impact protein export47. Importantly, overexpression of a dominant negative 

SecA1 in C. difficile reduces export of SecA2 substrates, possibly by blocking accessibility 

of the SecA2 substrates to the SecYEG channel47. However, unlike in mycobacteria, 

depletion of SecA1 in C. difficile does not influence export of SecA2 substrates47 suggesting 

that in Clostridium SecA2 works with SecYEG but not SecA1.

There has not been a similar investigation for a relationship between SecA2 and SecA1/

SecYEG in Listeria, but recently it was shown that secretion of the SecA2-dependent 

proteins p60 and NamA depends on the DivIVA protein105. The DivIVA protein is involved 

in localizing proteins to the cell poles and septa of bacteria119. Interestingly, GFP fusions to 

DivIVA, SecA2, p60, and NamA all localize to the septum in Listeria105. Thus, it is possible 

Feltcher and Braunstein Page 9

Nat Rev Microbiol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the SecA2-only system is specifically localized and DivIVA is required to either 

establish that localization pattern or deliver the SecA2-dependent proteins to the SecA2 

machinery.

Targeting proteins to the SecA2-only pathway

The features defining exported substrates of SecA2-only systems have not yet received 

significant attention. The two M. smegmatis lipoproteins that require SecA2 for export 

contain typical N-terminal Sec signal peptides. While these signal peptides are required for 

export112, they are not specific for targeting these proteins to SecA2 (Feltcher and 

Braunstein, unpublished). Therefore, there appears to be one or more features of the mature 

domains that determine SecA2-dependent export in mycobacteria. The mature domain of 

these SecA2-dependent substrates could possess post-translational modifications, as seen 

with the SecA2/SecY2 substrates, although there is currently no evidence for this possibility.

Model for SecA2-only Export

For SecA2-only systems, genetic studies support a model where SecA2 utilizes SecYEG to 

assist in Sec export of a certain class of preproteins45, 47(Fig. 1c). These SecA2 substrates 

must have features, which are not understood at this time, that make them incompatible for 

Sec export without the assistance of SecA2. SecA2 of both mycobacteria and Clostridium 

primarily localize to the cytoplasm, while much of SecA1 is found at the membrane in these 

bacteria45, 47. Thus, SecA2 could possibly function in the cytoplasm to recognize and target 

for export a specific subset of proteins that are otherwise overlooked or incompatible with 

the canonical SecA1. Alternatively, SecA2 could serve as an alternate motor protein that is 

necessary for translocation of certain proteins through SecYEG. In either case, SecA2 

ATPase activity is required for export.

Application of an in vitro translocation system would help strengthen this developing model 

and address basic questions about the operation of SecA2-only systems. Is there a role for 

SecA1 during SecA2-only export? What prevents the substrates of SecA2-only systems 

from being exported solely by SecA1/SecYEG system and how does SecA2 recognize these 

proteins? Does SecA2 function in targeting and/or translocation?

Another unresolved issue is whether preproteins without recognizable Sec signal peptides, 

like the Sod proteins of M. tuberculosis and L. monocytogenes, are true SecA2 substrates or 

if the export of these proteins is indirectly affected by SecA2. For example, SecA2 could 

export a currently unknown protein with a signal peptide that is itself required for export of 

proteins like Sod. Still, it is also plausible that proteins without signal peptides are 

recognized by SecA2 and exported directly through the SecYEG channel. In support of this 

model, SodA of Rhizobium leguminosarum is exported in a SecA-dependent manner despite 

lacking a recognizable signal peptide120. However, similar to M. smegmatis45 and C. 

difficile47 studies, an indirect role for the Sec system in exporting SodA of R. 

leguminosarum cannot be ruled out.
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Future directions

While it is now clear that SecA2 systems are critical for exporting specific proteins, 

surprisingly little is known about how these export systems function. The canonical Sec 

pathway is a well characterized process resulting from years of extensive study; however, 

the acquisition of SecA2 proteins in some bacteria suggests limitations to SecA1 and 

SecYEG function. The same structural, biochemical and in vitro reconstitution analyses used 

to understand canonical Sec export will surely prove valuable in answering the many 

mechanistic questions that exist about the SecA2/SecY2 and SecA2-only systems.

Structural regions of difference between SecA1 and SecA2 proteins will be of obvious 

interest to investigate. It will also be informative to compare SecA2 structures from SecA2/

SecY2 systems to those of SecA2-only systems. Surprisingly, the predicted domain 

organization of SecA2 proteins from SecA2/SecY2 systems and SecA2-only systems is 

similar, despite the known differences between these two types of SecA2 export pathways. 

Given the possibility that SecA2 proteins might be specifically adapted to accommodate 

binding of certain glycosylated preproteins or proteins lacking signal peptides, it will be 

particularly interesting to compare the architecture of SecA2 preprotein-binding clefts to the 

corresponding regions of SecA1 proteins. Also of interest will be the SecA2 IRA-1 two-

helix finger domain120, 121. The amino acid at the tip of the two- helix finger, which contacts 

the preprotein, is not conserved between SecA1 and SecA2 proteins121. This could reflect 

unique interactions between SecA2 proteins and their respective substrates or interactions 

with a unique SecY2 channel.

Finally, although there remains controversy about the multimeric state of the canonical SecA 

during export56, it will be interesting to establish whether SecA2 forms and functions as 

dimers. Heterodimers of SecA1 and SecA2 could possibly explain the roles of both these 

SecA proteins in export of some mycobacterial substrates45. In fact, SecA2 can bind SecA1 

in S. parasanguinis88, but it is unknown if this interaction has any biological function in 

export.

Accessory SecA2 systems make significant contributions to protein export in a diverse set of 

bacteria. Future research should apply the same depth of structural and biochemical studies 

to SecA2, as done for the canonical Sec pathway. A deeper understanding of accessory 

SecA2 systems will reveal additional mechanisms used by bacteria to transport proteins 

across the cytoplasmic membrane, and it is also likely to reveal unappreciated limitations of 

canonical Sec export.
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Glossary

In vitro reconstitution A technique for studying biochemical processes in vitro. In vitro 

reconstitution of the Sec pathway involves incubation of 

preprotein and purified SecA with SecYEG-containing inverted 

membrane vesicles (IMV). Preprotein translocation through 

SecYEG into the IMV is monitored by the loss of preprotein 

sensitivity to protease.

Preproteins Proteins synthesized with N-terminal Sec signal peptides for 

targeting to the Sec machinery.

Signal peptide An N-terminal amino acid sequence present on preproteins. The 

signal peptide helps target specific proteins for export out of the 

bacterial cytoplasm. Sec signal peptides are comprised of a 

tripartite structure with a positively charged N-terminus, 

hydrophobic core, and signal peptidase cleavage site.

Glycosyltransferase An enzyme that catalyzes the post-translational addition of 

carbohydrate mono- or oligosaccharides to an acceptor 

molecule. Some glycosyltransferases attach sugars to proteins, 

resulting in glycoproteins. The sugar composition and structure 

of glycosyl modifications can be diverse.

N-linked 
glycosylation

A type of glycosylation where a saccharide moiety is added to 

the to the amide nitrogen of asparagine.

O-linked 
glycosylation

A type of glycosylation where a saccharide moiety is added to 

the hydroxyl oxygen of serine or threonin.

Lipobox An amino acid motif found in the signal peptidase cleavage site 

of bacterial lipoproteins. The lipobox motif contains an 

invariant cysteine that becomes the first amino acid of the 

mature protein after signal peptidase cleavage and is the site of 

diacylglycerol attachment.

Autolysin Hydrolases that break the peptidoglycan matrix in the bacterial 

cell wall. Autolysins are important in bacterial cell growth and 

division.

S-layer An ordered array of protein subunits that form a lattice structure 

surrounding the bacterial cell wall. S-layers exist in many 

Gram-positive and Gram-negative bacteria, as well as Archaea. 

S-layers serve as scaffolding structures for enzymes, contribute 

to cell surface adhesion, and act as virulence factors among 

other functions.

Phagosome 
maturation

Phagosomes are vacuoles that form around foreign particles or 

bacteria during phagocytosis by eukaryotic cells. The 

phagosome undergoes multiple maturation events and ultimately 
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fuses with lysosomes resulting in a degradative phagolysosomal 

compartment.
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Online Summary

• The post-translational general secretion (Sec) pathway is powered by the 

essential SecA ATPase, which works with the SecYEG channel to translocate 

proteins across the cytoplasmic membrane.

• Mycobacteria and some Gram positive bacteria have two non-redundant SecA 

proteins: SecA1 and SecA2. SecA1 powers the essential canonical Sec pathway, 

while SecA2 exports of a limited set of proteins.

• SecA2 export systems have diverse and important roles in cell envelope 

biogenesis and bacterial pathogenesis.

• There are two types of SecA2 systems: SecA2/SecY2 systems and SecA2-only 

systems.

• SecA2/SecY2 systems appear to operate mostly independent of the canonical 

Sec machinery as dedicated transporters of serine-rich glycoproteins that 

function as adhesins. SecA2/SecY2 systems are encoded by a genomic locus 

that includes open reading frames for glycosylation and export machinery.

• SecA2-only systems do not contain a SecY2 or an obvious accessory membrane 

channel. Instead, SecA2-only systems appear to use the canonical SecYEG 

channel for exporting a diverse assortment of proteins.

• It is unknown how SecA2 functions in comparison to the well-studied canonical 

SecA (SecA1) proteins. The same structural, biochemical and in vitro 

reconstitution analyses used to understand canonical Sec export will surely 

prove valuable in answering the many mechanistic questions concerning SecA2/

SecY2 and SecA2-only systems.
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Figure 1. Models of Sec export
a) Post-translational Sec export is powered by the essential SecA ATPase. SecA can be 

divided into two main structural domains: a motor domain that drives ATP hydrolysis and a 

specificity domain that interacts with the preprotein destined for export. Step 1, preproteins 

synthesized with N-terminal Sec signal peptides (hatched) are bound by cytoplasmic SecA 

along a cleft between the two domains. Cytoplasmic chaperones, such as SecB, aid in 

keeping some preproteins unfolded prior to export and can directly deliver these preproteins 

to SecA. Step 2, SecA delivers the preprotein to a membrane-spanning complex composed 
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of SecY, SecE, and SecG. Here, the signal peptide inserts into SecY to help keep an open 

channel conformation. Step 3, SecA goes through rounds of conformational changes coupled 

to ATP hydrolysis to promote forward movement of the unfolded preprotein through the 

SecY channel. During these cycles, it is proposed that SecA inserts into the SecY channel, 

specifically by the IRA-1 two-helix finger (two helices). Step 4, during or shortly after 

translocation the signal peptide is removed by periplasmic signal peptidases (SP) and the 

protein then adopts its mature, folded conformation. The SecD, SecF, and YajC 

transmembrane proteins contribute to the efficiency of Sec export but are not shown. After 

translocation, the exported protein can remain associated with the cell envelope or be fully 

secreted into the extracellular environment. b) Biogenesis of surface glycoproteins by 

SecA2/SecY2 systems involves both glycosylation factors (green) and export machinery 

(yellow) that are distinct from the canonical Sec machinery. Serine-rich proteins are 

synthesized with N-terminal signal peptides (hatched). The accessory Sec proteins (Asps 1–

3) promote SecA2/SecY2 export by unknown mechanisms, but could target preproteins to 

the translocase and/or serve as a scaffold for the export complex. Asp4 and Asp5 are 

putative accessory components of the SecY2 channel, but they are not present in all SecA2/

SecY2 systems. SecA2/SecY2 export and glycosylation are likely coupled processes. As 

glycosyl groups (orange hexagons) are added to the preprotein by cytoplasmic glycosylation 

factors, including the core GtfA and GtfB glycosyltransferases, the SecA2 ATPase will 

energize transport of the unfolded preprotein through a channel formed by SecY2. SecA2/

SecY2 substrates also contain a C-terminal cell wall anchoring domain, which targets the 

exported protein to the cell wall after SecA2/SecY2 export through the membrane. c) 
SecA2-only systems lack a SecY2 channel; therefore, SecA2 likely utilizes the canonical 

SecYEG channel for export. SecA2 could target a certain subset of preproteins to the Sec 

translocase that are otherwise overlooked or incompatible with SecA1. There are examples 

of proteins with N-terminal Sec signal peptides (pictured here) and proteins lacking signal 

peptides that require SecA2 for export. SecA2 may deliver some preproteins to SecYEG 

and/or associate with SecYEG as needed to export substrates. The ATPase activity of SecA2 

likely drives export of preproteins through the SecYEG channel, possibly in conjunction 

with SecA1.
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Figure 2. Domain organization of accessory SecA2 proteins
Sequence alignments and structural modeling suggest that most functional domains are 

conserved between SecA1 and SecA2 proteins. The crystal structure of the M. tuberculosis 

SecA1 protein depicted here represents a typical SecA1 protein with the corresponding 

colored domains outlined below57. *The C-terminal domain (CTD) was not resolved in the 

M. tuberculosis crystal structure but is shown in the domain graphic. For comparison to 

SecA1, the predicted domain organization of M. tuberculosis SecA2 and Streptococcus 

gordonii SecA2 are included. SecA1 can be divided into two main structural domains, which 

are both composed of several subdomains18,56. The DEAD (Asp-Glu-Ala-Asp)-like motor 

domain is responsible for the ATP hydrolysis58,60,61 and consists of two nucleotide-binding 

folds: NBD1 and NBD2. NBD1 contains the two ATP-binding Walker boxes122,123. The 

helical scaffold domain (HSD) connects the motor domain with the rest of the specificity 

domain, to allow coupling of preprotein-binding with ATP hydrolysis124,125. Interactions 

between SecA1 and the preprotein map along a hydrophobic cleft formed by NBD1, the 

preprotein crosslinking domain (PPXD)22–24, and portions of the HSD linker. Within the 

HSD region is a two-helix finger known as IRA-1, which is thought to assist inserting of the 

preprotein into the SecY channel during translocation. Conservation of the motor domain 

between SecA1 and SecA2 proteins confirms the observation that SecA2 proteins are 

ATPases44,62. There are differences between SecA1 and SecA2 in the specificity domain 
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that could affect substrate specificity and/or function. All SecA2 proteins are smaller than 

their SecA1 counterparts due to a truncation of the CTD and helical wing domain (HWD). 

Although not depicted in the M. tuberculosis SecA1 structure, the CTD was resolved in an 

E. coli SecA structure23 and the C-terminal linker (CTL) within the CTD lies along the 

hydrophobic preprotein-binding cleft.
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Figure 3. Organization of accessory secA2 genomic loci
a) Accessory SecA2/SecY2 systems are found in a diverse set of Streptococcus and 

Staphylococcus species, where they function in biogenesis of surface glycoproteins 

(depicted in purple). All of these loci contain the core secA2 and secY2 genes shown in red. 

Some Bacillus species, including B. anthracis, have putative SecA2/SecY2 systems, 

although the exported substrates of these systems are unknown and the secA2 and secY2 

genes are separated in these cases. Genes encoding putative export machinery are shown in 

yellow while those encoding glycosylation machinery are shown in green. b) Examples of 

SecA2-only systems are found in mycobacteria, Clostridium, and Listeria. The secA2 loci of 

SecA2-only systems are not conserved and export a diverse set of substrates. In some cases, 

the genes encoding the exported substrates (purple) are found at the secA2 locus. However, 

this is not always the case and genes located elsewhere in the genome encoding SecA2-

dependent proteins are not depicted. In addition to slpA, the C. difficile secA2 locus contains 

genes encoding eleven additional cell wall proteins that are putative SecA2 substrates, of 

which three are shown in light purple.
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Figure 4. SecA2/SecY2-targeting features
SecA2/SecY2 preproteins have features for both targeting to the SecA2/SecY2 machinery 

for glycosylation/export, and for blocking export by the canonical Sec pathway. Most of 

these targeting features have been defined using the S. gordonii GspB protein, shown here. 

The mature domain of GspB can be divided into several domains. Two serine-rich repeats 

domains (SRR1 and SRR2) are glycosylated in the cytoplasm prior to export and this post-

translational modification blocks GspB export by SecA1/SecYEG. GspB, like all SecA2/

SecY2 preproteins has an unusually long N-terminal signal peptide that is required for 

export. The signal peptide has the same tripartite structure of Sec signal peptides including a 

positively charged N-terminus, hydrophobic core, and cleavage domain. Within the 

hydrophobic core of the signal peptide are three glycine residues that are required for GspB 

export though SecA2/SecY2, but these same glycines also inhibit export by SecA1/SecYEG, 

through unknown mechanisms. The accessory Sec transport (AST) domain is adjacent to the 

signal peptide and is required for export by SecA2/SecY2. Also depicted in the mature 

domain are the basic region and C-terminal cell wall anchoring domain (CWA).
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