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Abstract

The Mycobacterium tuberculosis (MTB) membrane is rich in antigens that are potential targets for 

diagnostics and the development of new vaccines. To better understand the mechanisms 

underlying MTB virulence and identify new targets for therapeutic intervention we investigated 

the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv 

(MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, 

we used LC-MS/MS analysis in combination with label-free quantitative (LFQ) proteomics, 

utilizing the area-under-curve (AUC) of the extracted ion chromatograms (XIC) of peptides 

obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained 

relative abundance ratios for 2,203 identified membrane-associated proteins in high confidence. 

Of these proteins, 294 showed statistically significant differences of at least 2 fold, in relative 

abundance between MTB and BCG membrane fractions. Our comparative analysis detected 

several proteins associated with known genomic regions of difference between MTB and BCG as 

being absent, which validated the accuracy of our approach. In further support of our label-free 

quantitative data, we verified select protein differences by immunoblotting. To our knowledge we 

have generated the first comprehensive and high coverage profile of comparative membrane 

proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate 

the proteomic basis of the intrinsic virulence of the MTB pathogen.
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Introduction

Tuberculosis remains a major world health problem with Mycobacterium tuberculosis, the 

bacterium responsible for this disease, claiming 1.4 million lives annually1. Exacerbating 

this problem is the rise in multidrug-resistant (MDR), extensively drug-resistant (XDR) and 

most recently, totally drug-resistant (TDR) strains of M. tuberculosis, which threaten to 

undermine current tuberculosis treatments2. The currently available tuberculosis vaccine, 

known as BCG, is an attenuated strain of Mycobacterium bovis. All M. bovis strains, 

including BCG, are very similar to M. tuberculosis exhibiting 99.9% identity at the DNA 

level3. Unfortunately, the ability of BCG vaccination to protect adults from pulmonary 

tuberculosis is highly variable4. Thus, there is a major need to develop new drugs and 

vaccines to control tuberculosis and a better understanding of M. tuberculosis biology will 

help achieve this goal.

Many aspects of M. tuberculosis physiology, pathogenesis, and immunity remain to be 

understood. Comparisons of virulent M. tuberculosis to attenuated M. bovis BCG can inform 

on these unknowns. Genomic comparisons reveal several regions of difference (named RDs) 

that are deleted in BCG but present in M. tuberculosis5. Proteomic comparisons of M. 

tuberculosis and BCG are another approach for identifying differences of potential 

importance. By reporting on protein abundance, proteomic methods have the advantage of 

taking into account both transcriptional and post-transcriptional effects. Further, when 

combined with subcellular fractionation, proteomics can report on protein localization. M. 

tuberculosis and BCG proteomes were initially compared using 2-dimensional gel 

electrophoresis (2D-GE) followed by mass spectrometry-based identification of select 

proteins6–8. At best, this approach led to the identification of almost 300 proteins6, 9. Since 

then, quantitative “shotgun” proteomics has become the choice for large scale proteome 

comparisons, which enables more comprehensive assessment of complex protein samples as 

a result of higher throughput and sensitivity associated with this method10, 11.

Proteins localized to the membrane of M. tuberculosis play critical roles in vital cell 

processes including nutrient transport, cell wall synthesis, energy metabolism, and signal 

transduction12–14. Additionally, mycobacterial membrane proteins can elicit immune 

responses, making the membrane proteomes of M. tuberculosis and BCG of significant 

interest for vaccination and diagnostic studies15. Initial efforts to identify the M. tuberculosis 

and BCG membrane proteome used 2D-GE; however, the high insolubility of membrane 

proteins poses a significant technical challenge for 2D-GE and limits the numbers of 

proteins that can be identified16, 17. Significantly better protein identification coverage was 

subsequently obtained when membrane proteins were solubilized and pre-separated by 1D 

SDS-PAGE followed by LC-MS/MS analysis of trypsin digested gel slices comprising the 

entire sample18. Using this approach in independent studies, 349 and 739 proteins out of the 

possible 4,015 proteins encoded by the genome were identified in M. tuberculosis 

membrane fractions prepared by differential centrifugation18, 19. With BCG a similar effort 

involving Triton X-114 fractions, which enriches for lipophilic proteins including 

hydrophobic membrane proteins, identified 351 proteins and 1,766 M. tuberculosis proteins 

were identified in Triton X-114 fractions20. Triton X-114 can be considered an alternative to 
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differential centrifugation for enriching membrane and membrane-associated proteins20. 

While the number of proteins identified in mycobacterial membrane proteins has increased 

considerably18, 19, there has yet to be an in-depth quantitative comparison of M. tuberculosis 

and BCG membrane protein composition.

In the study reported here, we combined SDS-solubilization and 1D SDS-PAGE separation 

of membrane proteins with LC-MS/MS and label-free quantitative proteomics, to 

comprehensively identify and compare the membrane fraction proteomes of the virulent M. 

tuberculosis H37Rv strain (MTB) and M. bovis BCG. With this approach, we identified a 

total of 2,203 proteins associated with the mycobacterial cytoplasmic membrane. Further, 

label-free quantification (LFQ) revealed 294 proteins that differed significantly in relative 

abundance, by at least 2-fold, between MTB and BCG. Several proteins encoded by deleted 

RD regions of BCG were identified as missing in BCG, which validated our approach. The 

quantitative differences in membrane proteins identified in this work have potential to help 

explain the deficiencies in the BCG vaccine and to inform on virulence and immunogenic 

features of M. tuberculosis. The data reported here should aid efforts to develop new 

tuberculosis control and preventative measures.

Experimental Procedures

M. tuberculosis and M. bovis BCG growth conditions

Mycobacterium tuberculosis H37Rv (MTB) and Mycobacterium bovis BCG Pasteur were 

grown at 37° C in liquid Middlebrook 7H9 medium (Difco) supplemented with 0.05% 

Tween 80, 0.5% glycerol, and 1X ADS [>0.5% bovine serum albumin, 0.2% glucose, 0.85% 

NaCl]. Two independent 100 mL cultures of each strain were grown to an OD600 of 1, when 

cells were then harvested by centrifugation and washed with phosphate-buffered saline 

(PBS). For removal from BSL-3 containment, the washed pellets were sterilized by gamma-

irradiation in a JL Shephard Mark I 137Cs irradiator (Dept. of Radiobiology, University of 

North Carolina at Chapel Hill).

Cytoplasmic membrane fraction preparation

Cytoplasmic membrane fractions were isolated by centrifugation as previously described18. 

Briefly, cells suspended in PBS containing a cocktail of protease inhibitors were lysed by 

passage through a french press cell. Unlysed cells were removed by centrifugation at 3,000 

× g and the clarified whole cells lysates were spun at 27,000 × g for 30 minutes to remove 

the cell wall fraction. The supernatant was then spun at 100,000 × g for 2 hours to isolate the 

cytoplasmic membrane fraction. Membrane fractions were washed once, suspended in PBS, 

and proteins concentrated using an Amicon Ultra centrifugation filter with a 10 kD pore size 

(Millipore). Protein concentrations were determined by BCA assay (Pierce) using a BSA 

standard and equalized among both strains and all replicates.

Separation and in-gel digestion of membrane proteins

For label-free quantitative proteomics experiments, two biological replicates of MTB and 

BCG membrane proteins were separated on a 12% reducing SDS-PAGE gel. For each 

sample, 8.8 mg of protein was loaded in an individual lane for separation. The protein bands 
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were visualized by Coomassie Blue R-250 staining (Bio-Rad, Hercules, CA) and protein 

bands for each biological sample were cut into 10 equivalent gel slices, approximately 2 mm 

thick. Trypsin digestion of the excised gel slices was performed as previously described21 

with modifications. Briefly, each gel slice was cut into smaller pieces and placed in a single 

well of a 96-well U-bottom polypropylene plate. After de-staining with acetonitrile (ACN), 

slices were incubated in 25 mM ammonium bicarbonate (ABC) containing 20 µg/mL of 

sequencing-grade trypsin overnight at 37° C. The digest supernatants were transferred to a 

new 96-well plate. Tryptic peptides were extracted from the gel slices by two washes with 

50% ACN. The ACN washes were added to the ABC wash in the fresh plate. Digested 

peptides were store at −80° C until lyophilization.

Liquid Chromatography-Tandem Mass Spectrometry and Protein Identification

In gel digested peptides were desalted using PepClean C18 spin columns (Pierce, Rockford, 

IL), used according to the manufacturer’s instructions, and re-suspended in an aqueous 

solution of 0.1% formic acid. Identification of proteins was done using reversed-phase LC-

MS/MS on a 2D-nanoLC Ultra system (Eksigent Inc, Dublin, CA) coupled to an LTQ-

Orbitrap Velos mass spectrometer (Thermo Scientific, San Jose, CA). The Eksigent system 

was configured to trap and elute peptides via a sandwiched injection of ~ 250 fmol of 

sample. The trapping was performed on a 3 cm-long 100 µm i.d. C18 column while elution 

was performed on a 15 cm-long 75 µm i.d., 5 µm, 300Å particle ProteoPep II integraFrit 

C18 column (New Objective Inc, Woburn, MA). Analytical separation of the tryptic 

peptides was achieved with a 70-min linear gradient of 2–30% buffer B at a 200 nL/min, 

where buffer A is an aqueous solution of 0.1% formic acid and buffer B is a solution of 

0.1% formic acid in acetonitrile.

Mass spectrometric data acquisition was performed in a data-dependent manner on a hybrid 

LTQ-Orbitrap velos mass spectrometer. A full scan mass analysis on an Orbitrap (externally 

calibrated to a mass accuracy of < 1 p.p.m and a resolution of 60,000 at m/z 400) was 

followed by intensity-dependent MS/MS of the 10 most abundant peptide ions. High energy 

collision dissociation (HCD) was used to dissociate peptides with normalized collision 

energy of 35 eV. The MS/MS acquisition of each precursor m/z was repeated for 30 s and 

subsequently excluded for 60 s. Monoisotopic precursor ion selection (MIPS) and charge 

state screening were enabled for triggering data-dependent MS/MS scans. All 10 gel slices 

of each of the two biological replicates of MTB and BCG strains were subjected to three 

independent LC-MS runs (three technical replicates for each of the two biological 

replicates), resulting in the production of 120 LC-MS runs. Mass spectra were processed, 

and peptide identification was performed using Andromeda search engine found in 

MaxQuant software ver. 2.2.1. (Max Planck Institute, Germany) All protein database 

searches were performed against the M. tuberculosis H37Rv protein sequence database 

(RefSeq NC_000962 uid57777) downloaded from National Center for Biotechnology 

Information (NCBI)22. This database contained 4,018 annotated proteins and the sequences 

were derived from the H37Rv ASM19595v2 assembly. Peptides were identified with a 

target-decoy approach using a combined database consisting of reverse protein sequences of 

the H37Rv and common repository of adventitious proteins (cRAP). The cRAP database 

was obtained from the Global Proteome Machine (GPM) ftp site (ftp://ftp.thegpm.org/fasta/
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cRAP). Peptide identification was made with a false discovery rate (FDR) of 1% (10) while 

peptides were assigned to proteins with a protein FDR of 5%. A precursor ion mass 

tolerance of 20 ppm was used for the first search that allowed for m/z retention time 

recalibration of precursor ions that were then subjected to a main search using a precursor 

ion mass tolerance of 5 ppm and a product ion mass tolerance 0.5 Da. Search parameters 

included up to two missed cleavages at KR on the sequence (11), and oxidation of 

methionine as a dynamic modification. All MTB and BCG protein identifications are 

reported with a posterior error probability (PEP) ≤ 0.1 and filtering of reverse and 

contaminant proteins.

Protein Quantitation

Label-free quantitation was based on peak area23, 24. The measured area under the curve 

(AUC) of m/z and retention time aligned extracted ion chromatogram (XIC) of a peptide 

was performed via the label-free quantitation module found in MaxQuant [ver. 1.2.2.5]. All 

six replicates (biological and technical replicates) of each strain, with 10 LC-MS runs each, 

were included in the LFQ experimental design with protein-level quantitation and 

normalization performed using unique and razor peptide features corresponding to 

identifications filtered with a peptide FDR of 0.01, and protein FDR of 0.05. The MaxQuant 

protein groups and evidence files were processed, stored in an MS-Access database and 

statistical analysis and visualization was performed using Perseus [ver. 1.2.0.17] (Max 

Planck Institute, Germany) and JMP genomics (SAS, Cary NC). Relative quantification 

changes between MTB and BCG in replicate data was performed using t-test statistics with a 

p-value < 0.05. The quantitative data was reported with t-test differences between MTB and 

BCG and corresponding p-values and estimation of false discovery rates (FDR) using q-

values25 for both raw and normalized LFQ intensities and LFQ intensities that were imputed 

in replicated runs using a Gaussian distribution with a width of 0.3 and downshift of 1.8 as 

the imputation parameters26.

Immunoblotting of membrane proteins

For both replicates of MTB or BCG, 30 µg of clarified whole cell lysate (WCL), was 

separated on a 12% SDS-PAGE gel. Membrane fractions (MEM) obtained from 30 µg of 

WCL were also loaded in independent lanes to visualize subcellular localization of the 

protein. For the Icl1 immunoblot, 60 µg of membrane fraction was loaded, and 

approximately 0.5 µg of recombinant Icl1 protein27 (rIcl) was included as a control to 

identify the appropriate protein species. Proteins were transferred to a nitrocellulose 

membrane (Whatman) then detected using either anti-Icl1 (provided by David Russell) at 

1:5,00027, anti-GlcB (provided by Suman Laal) at 1:2,50028, anti-SigA (provided by Murty 

Madiraju) at 1:20,00029, or anti-19kDa (provided by Douglas Young) at 1:20,000. Anti-

mouse and anti-rabbit secondary antibodies conjugated to alkaline phosphatase (BioRad) 

were used as appropriate at a concentration of 1:20,000. Signal was detected using ECF 

reagent (GE Healthcare).
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Results

Our understanding of why the BCG vaccine is attenuated or fails to elicit optimal protection 

against M. tuberculosis infection remains incomplete. Using quantitative “shotgun” 

proteomics, we set out to identify the composition of the membrane proteomes of attenuated 

BCG and virulent MTB and compare the relative abundance of the individual proteins in the 

two strains.

Identification of the MTB and BCG membrane proteome

To generate comprehensive and accurate lists of the M. tuberculosis and BCG membrane 

proteomes, we isolated membrane fractions from two biological replicates of M. 

tuberculosis H37Rv (MTB) and M. bovis BCG cultures by differential ultra-centrifugation 

of cell lysates. Membrane proteins were subjected to SDS-solubilization, separated by 1D 

SDS-PAGE, and then analyzed by LC-MS/MS.

Proteins were identified in MTB and BCG membrane fractions from six replicates (two 

biological replicates of each species, each with three technical replicates) using MaxQuant 

and label-free quantification design, where each biological group was subjected to a protein 

sequence database search against a concatenated database consisting of H37Rv protein 

entries. A total of 2,203 proteins were identified in high confidence using the target-decoy 

approach with a peptide FDR cut-off of 0.01 (Supplemental Table 1). In addition, a protein 

FDR cut-off of 0.05 was employed. Figure 1A shows the reproducibility of the proteins 

identified between replicates. Analysis of the first set of MTB and BCG biological samples 

revealed 1,371 proteins that were identified in all three technical replicates, while 

comparison of the second set of biological samples revealed 1,270 common identifications 

across all technical replicates. Of the 2,203 total proteins, 1,760 were identified with a 

minimum of 2 peptides per protein in any one of the six runs (See Supplemental Table 1). In 

MTB there were 2,003 proteins identified and in BCG 2,009 proteins, with the majority of 

proteins identified in a strain being identified in all six replicates (Figure 1B). Figure 1C 

shows that a majority of the proteins (1,809 out of 2,203) were identified in both MTB and 

BCG while 194 proteins were only identified in MTB and 200 proteins were unique to BCG. 

When the same comparison is run with the proteins identified with a minimum of 2 peptides 

in any one of the six runs, 1,389 out of 1,760 proteins were identified in both MTB and 

BCG, while 181 proteins were only identified in MTB and 190 proteins only in BCG.

Of the 2,203 total proteins identified in the membrane fractions of MTB and/or BCG, 26% 

(580) are predicted to have a transmembrane domain for integration into the cytoplasmic 

membrane or a cleavable signal peptide for export across the cytoplasmic membrane (Figure 

2). 440 proteins have putative transmembrane domains predicted by the TMHMM 

algorithm30. 140 proteins are predicted by SignalP31 or TatP32 to contain either Sec or Tat 

export signal peptides, which would target them for export across the cytoplasmic 

membrane by one of the corresponding conserved protein export systems33. Of the proteins 

with signal peptides, 54% contain a lipobox in the signal peptide that predicts the proteins 

become lipidated during the process of export34. We identified 75 out of the almost 100 

predicted lipoproteins of M. tuberculosis H37Rv35. The relatively high number of potential 
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lipoproteins detected in the membrane fractions is consistent with the established role of 

lipid modification in anchoring proteins to the membrane36.

Interestingly, however, the majority of proteins identified in the membrane fraction lacked 

transmembrane domains and/or signal peptides. Previous mass spectrometry studies have 

similarly identified a population of proteins lacking export signals in mycobacterial 

cytoplasmic membrane fractions prepared by the differential centrifugation method we used 

here, as well as with Triton X-114 fractionation19, 37. Some of these proteins lacking export 

signals and/or transmembrane domains may be cytoplasmic proteins that are peripherally 

associated with phospholipids in the membrane or integral membrane proteins. 

Alternatively, they may represent mycobacterial membrane proteins that lack predicted 

signals for localization. A final possibility is that these proteins lacking predicted export 

signals are cytoplasmic contaminants that are detected by the high sensitivity of mass 

spectrometry.

These 2,203 proteins that we identified can be broadly divided into several functional 

categories (Figure 3)38. In addition to a large list of conserved hypothetical proteins of 

unknown function, the majority of the proteins we identified in the membrane have 

predicted roles in cell wall processes, lipid metabolism, and intermediary metabolism. This 

pattern of functional category enrichment is similar to a previous proteomic analysis of the 

M. tuberculosis membrane19, 20, 39.

Label-free quantitation and comparison of M. tuberculosis and BCG membrane proteomes

Label-free quantification (LFQ) was performed across all biological samples and replicates 

via alignment of retention-time and m/z features that were detected at the MS1 level. Using 

the MaxQuant software, the area-under-the curve (AUC) of each extracted peptide ion 

chromatogram was used to compute the LFQ intensities at the peptide and protein levels for 

each biological replicate. This analysis led to relative abundance ratios for 1,788 proteins. 

We also analyzed the data with imputation of missing values in order to generate abundance 

ratios and statistics for all 2,203 proteins identified. Imputation provides a means of 

statistical correction for missing values by calculating what could have been derived 

experimentally26. We defined significant differences (p ≤ 0.05) in protein levels in MTB 

versus BCG using a t-test. Using this criterion, the majority of proteins showed no 

significant difference in relative abundance between MTB and BCG (Figure 4A). 

Supplement Table 4 lists the 294 proteins with significant differences and a log2 BCG/MTB 

ratio of ±1 or greater (representing differences > 2-fold) before and after missing value 

imputation (191 of these proteins were significant without imputation). These 294 proteins 

include 188 proteins (139 without imputation) that were lower in BCG and 106 after missing 

value imputation (85 without imputation) that were present at higher levels in BCG 

compared to MTB. Figure 4B shows a prototypical correlation analysis between the 

quantitative ratios between BCG and MTB. The good orthogonal fit between the data 

reveals good reproducibility between replicate runs with a Pearson’s correlation coefficient 

of 0.8

Given the genomic identity between M. tuberculosis and BCG of >99.9%, 294 proteins 

(after missing value imputation) with statistically significant differences of at least 2-fold 
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may seem high. However, it is not too much of a surprise when considering the deleted 

genomic RD regions of BCG5, 40 (discussed below) and >2000 SNPs between BCG and M. 

tuberculosis3. In addition, a prior study comparing differential gene expression at the level 

of transcripts between M. tuberculosis and M. bovis (the virulent parent of BCG) reported 

6% of the total genome showing differential expression5, 40, 41. Further, the potential for a 

single protein alteration/disruption to affect numerous proteins in a pathway is a real 

possibility. The proteins on our stringent lists of differences include interesting examples of 

proteins with roles in lipid and intermediary metabolism, cell wall processes, and transport 

systems (Tables 1). There are additionally many conserved hypothetical proteins that differ 

between the strains. Review of the proteins on these lists also revealed cases in which the 

relative abundance of multiple proteins encoded in the same genomic region was altered 

similarly. In these cases, where the corresponding genes are located in operons or under the 

control of the same promoter it is likely the proteomic differences reflect transcriptional 

differences between strains. Among such examples, is an interesting group of three proteins 

encoded by neighboring genes that are part of a polyacyltrehalose (PAT) biosynthesis locus 

(rv1180–rv1183) and a genomic locus encoding components of the ESX-3 specialized 

secretion system (rv0282–rv0292) (Figure 5).

Validation of differences detected between MTB and BCG membrane proteomes

As one way to validate the accuracy of our proteomic approach to identify proteins that 

differ between MTB and BCG, we searched our datasets for proteins encoded by the RD 

deletion regions of BCG. From a total of 132 genes that have been mapped to the 14 RD 

deletion regions of BCG Pasteur40, we identified peptides mapping to 36 RD proteins in 

MTB, 24 of which were identified with ≥2 peptides per protein. As expected, all RD-

associated proteins identified in MTB were absent in BCG, reflecting deletion of the 

corresponding genes in the BCG strain (Table 1). When quantified with LFQ, the RD 

proteins had extremely low values with imputation as expected (Supplement Table 4).

We also experimentally validated differences in protein abundance by immunoblotting. 

However, this analysis was limited to proteins for which we could obtain antibodies. We 

evaluated a set of representative proteins that were either increased in BCG, decreased in 

BCG, or equal between the BCG and MTB membrane proteomes. We analyzed whole cell 

lysates (WCL) and the corresponding membrane (MEM) fractions prepared from MTB and 

BCG, to look for protein level differences comparable to our mass spectrometry data (Figure 

6).

The M. tuberculosis housekeeping sigma factor SigA (rv2703) is primarily a cytoplasmic 

protein, but small amounts were detected in membrane fractions. This protein was relatively 

unchanged between the MTB and BCG membranes using our label-free analysis (log2 

BCG/MTB = 0.759, p = 0.555 after imputation). Using an anti-SigA antibody we found 

similar amounts of SigA protein in membrane fractions from both strains, confirming the 

mass spectrometry finding (Figure 6). As an example of a protein under-represented in the 

BCG membrane in comparison to MTB, we chose the LpqH lipoprotein (19kDa lipoprotein, 

Rv3763), which is a potent M. tuberculosis antigen42. Our LFQ data for LpqH, although not 

significant (p = 0.178) had a BCG/MTB log2 ratio of −2.955. Immunoblotting was 
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consistent and revealed that the amount of LpqH was reduced in the BCG membrane 

compared to the MTB membrane. The reduced amount of LpqH in BCG was also evident 

when comparing whole cell lysates of the two strains.

We also evaluated two proteins that were significantly increased in abundance in the BCG 

membrane: isocitrate lysase Icl1 [rv0467, log2(BCG/MTB) = 3.52, p = 0.025] and malate 

synthase GlcB [rv1837c, log2(BCG/MTB) = 2.10, p = 0.051]. Our immunoblotting analysis 

detected Icl1 and GlcB in the membrane of BCG but little to no protein in the membrane of 

MTB (Figure 6). Interestingly, the amount of Icl1 was also higher in the whole cell lysate of 

BCG but the levels of GlcB in whole cell lysates appeared equivalent. These data highlight 

an advantage of proteomic comparisons of subcellular fractions, which is the ability to 

identify both localization differences of proteins that appear equally expressed between 

strains, such as GlcB, as well as changes in total protein abundance that consequently results 

in less protein at the membrane, such as LpqH and Icl1. Taken together, our validation 

efforts support our results using a label free quantitative proteomic approach to compare 

mycobacterial proteomes.

Discussion

Tuberculosis remains a major world health problem. Unfortunately, BCG is the only 

tuberculosis vaccine currently available and it demonstrates highly variable and incomplete 

protection against adult pulmonary tuberculosis. There is a need to develop improved 

vaccines and there is also a need to better understand the virulence properties of M. 

tuberculosis in order to develop new drugs to treat tuberculosis. A better understanding of 

the differences between the attenuated BCG vaccine and M. tuberculosis will aid these 

efforts.

Comparative genomics has revealed several differences at the chromosomal level between 

BCG and MTB, but these strains have yet to be compared using large scale comparative 

proteomics strategies. Quantitative “shotgun” proteomics allows for determining the relative 

abundance of large numbers of proteins between strains. Furthermore, the use of label-free 

quantification is a simple method for assessing relative quantities of proteins between 

samples that does not require additional chemistries or sample preparation. This is 

particularly ideal for slow-growing organisms such as M. tuberculosis, which may not be 

easily amendable to metabolic labeling.

So far, label-free quantitative proteomics have only been applied in a handful of studies of 

M. tuberculosis, but are producing encouraging results with enhanced coverage of the 

mycobacterial proteome37, 43, 44. However, this approach had yet to be extended to a direct 

comparison of the BCG vaccine and virulent MTB. In applying this method to our study 

here, we quantified significantly more proteins (2,203) than past studies involving 2D gel 

comparisons of M. tuberculosis and BCG, which yielded between 200 and 300 

proteins6, 8, 45. We measured relative abundances for a large number of proteins, including 

191 (296 after imputation) proteins with statistically significant (p≤0.05) and protein 

abundance differences of 2-fold or more. It is also interesting to compare the total number of 

proteins we identified in this study to the total number of proteins identified in a Triton 

Gunawardena et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2015 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



X-114 fraction of M. tuberculosis by Malen et al. (2011)37, which represents an alternate 

membrane protein enrichment strategy to the fractionation scheme we used. Of the 1,575 M. 

tuberculosis proteins identified in the Triton X-114 fraction, 71% of them were also 

identified in our study. However, 44% of the 2,003 H37Rv proteins we identified were not 

identified in the prior Malen et al. study (data not shown). Thus, our report provides 

important confirmation for many proteins as being membrane associated while also 

identifying additional examples. The differences can likely be attributed to the different 

membrane enrichment protocols used. Importantly, the differential centrifugation method is 

widely used to prepare membrane fractions in M. tuberculosis research46.

Importantly, all our efforts to validate our proteomic analysis gave consistent results, which 

provide confidence in the previously unknown differences identified in our study. We were 

able to detect changes in LpqH, Icl1, and GlcB proteins, which were predicted by the mass 

spectrometry data to differ between BCG and MTB membranes. We also identified RD 

region-associated proteins in the MTB membrane that were undetected in the BCG 

membrane as expected. Along with the proteins encoded in RD regions, SigK (rv0445) is 

another protein we expected to find significantly reduced in BCG. SigK is a sigma factor 

known to have a point mutation in its start codon in BCG47. In MTB the SigK start codon is 

ATG, but in BCG it is ATA which reduces translation efficiency in BCG. Our LFQ analysis 

showed that SigK was reduced in the BCG membrane [log2 (BCG/MTB) = −4.872, p = 

1.6×10−4], which is consistent with the protein being reduced in abundance in BCG. It is 

important to recognize that label-free quantification is a discovery tool for initial hypothesis 

generation. For proteins that do not have antibodies or other orthogonal testing methods that 

are highly quantitative, accurate quantification will require stable isotope dilution mass 

spectrometry methods such as SRM (selected reaction monitoring), which could be used as a 

verification assay.

When quantitated by LFQ, the RD region-associated proteins had extremely low values with 

imputation. Other proteins with very large changes in LFQ abundance (either low or high) 

could represent other examples of strain-specific proteins. In fact, there were 178 proteins 

for which ≥ 2 peptides was identified in at least 4 out of 6 replicates of the BCG membranes 

samples, but no corresponding peptides were identified in any MTB replicate (Supplemental 

Table 2). Alternatively, 186 proteins were only identified in MTB using the same criteria 

(Supplemental Table 3).

It will also be particularly interesting to follow up on proteins that were significantly more 

abundant or only identified in the pathogenic MTB membrane (i.e. less abundant or 

undetected in BCG), as candidates for virulence factors, antigens, or explaining physiologic 

differences between the strains. We identified 294 proteins that were at least 2-fold 

difference in abundance in the MTB membrane at p ≤ 0.05 (Supplemental Table 4). 

Furthermore, there were 186 proteins that were only identified in MTB by at least 2 peptides 

in 4 of 6 runs with no corresponding peptides identified in any BCG replicate (Supplemental 

Table 3). These proteins would be leading candidates for roles in these processes.

Among the interesting examples of proteins with reduced levels in BCG versus MTB were a 

group of three proteins encoded by neighboring genes that are part of a polyacyltrehalose 

Gunawardena et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2015 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(PAT) biosynthesis locus (rv1180–rv1183). For Rv1179c, Rv1180/Pks3 and Rv1181 Pks4, 

these proteins were present at significantly lower levels in BCG versus MTB (Figure 6A). 

Rv1180/Pks3 and Rv1181/Pks4 (also known as Msl3) comprise a polyketide synthase 

needed to synthesize the mycolipenic side chains of PAT.48, 49Interestingly, PAT is a 

surface lipid only found in pathogenic mycobacteria49, 50 but the explanation for the PAT 

deficiency in BCG Pasteur has remained unknown3. Our data suggests it is due to deficiency 

in the PAT biosynthetic machinery. Rv1179c is a protein of unknown function and not 

currently thought to function in PAT biosynthesis but its similar behavior in BCG suggests it 

might also have a role in PAT biosynthesis.

Another set of proteins that are reduced or absent in the BCG membrane proteome versus 

that of MTB are components of the ESX-3 specialized secretion system, which is encoded 

by a genomic locus, including Rv0282/EccA3, Rv2083/EccB3, Rv0284/EccC3, Rv0289/

EspG3, Rv0290/EccD3, Rv0291, and Rv0292/EccE3 (Figure 6B). The ESX-3 system is 

essential in M. tuberculosis with an apparent function in iron and zinc homeostasis51, 52. In 

addition, a role for ESX-3 in eliciting protective immunity against M. tuberculosis was 

recently reported. In mouse studies, vaccination with a non-pathogenic M. smegmatis strain 

engineered to express the M. tuberculosis ESX-3 locus elicited better protection against M. 

tuberculosis challenge than BCG53. While the role of ESX-3 in this protection is not clear, 

one possibility is that some ESX-3 components are protective antigens. To our knowledge, 

our study is the first to show that levels of ESX-3 in BCG are reduced compared to M. 

tuberculosis, which raises the interesting possibility that the vaccination efficacy of BCG 

could be improved by increasing the levels of the ESX-3 system.

Also of interest are proteins that were more abundant in the BCG membrane compared to 

that of MTB, as they may provide insight into the adaptive changes that BCG has undergone 

that influence virulence and immunogenicity. We identified several proteins involved in the 

TCA and glyoxylate shunt pathways that were statistically more abundant in the BCG 

membrane. The significance of this result is unclear although it suggests a difference in 

metabolic activity between BCG and M. tuberculosis, at least in our growth conditions. 

Among the group of proteins that are more abundant in BCG were both of the mycobacterial 

isocitrate lyases: Icl1 [Rv0467, log2 (BCG/MTB) = 3.523, p = 0.025] and AceA [Rv1915/

Rv1916, log2 (BCG/MTB) = 2.104, p = 0.051]. In MTB, both of these isocitrate lyases are 

required for survival in a mouse model of infection54. In line with our observations of higher 

Icl levels in BCG, we also detected increased GlcB malate synthase, an enzyme that 

participates along with isocitrate lyase in the glyoxylate shunt. Because the glyoxylate shunt 

is required for mycobacteria to utilize fatty acids as carbon sources, which are believed to be 

the primary carbon source for MTB during infection, it would be interesting to determine if 

these observations reflect any differences in fatty acid metabolism between BCG and MTB, 

which could influence growth in the host.

In conclusion, we used a label-free quantitative approach to compare protein abundance in 

different species of mycobacteria. Not only did this work greatly expand the number of 

proteins that have been compared between BCG and M. tuberculosis, it identified many 

differences at the protein level that were not predicted from genomic comparisons. 

Comparison to the RD regions of the genome and immunoblot analysis supports the 
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accuracy of our data for proteins showing significant differences in abundance between 

MTB and BCG. Among the proteins identified are new candidates for understanding the 

well-established but poorlyunderstood differences between M. tuberculosis and BCG.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Total proteins identified in the M. tuberculosis (MTB) and M. bovis BCG membrane 
fractions
(A) Mass spectrometry analysis of membrane fractions derived from either M. tuberculosis 

(MTB) or M. bovis BCG (BCG) resulted in the high-level of reproducibility in three 

technical runs for each of the two biological replicates with biological replicate 1 showing 

1,371 identifications in all three technical replicates while biological replicate 2 shows 1,270 

identifications in all three technical replicates. (B) Proteins identified in all six runs were 

categorized on the basis of the number of replicates they were identified, for all proteins in 
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MTB, BCG, or both strains. (C) Protein identifications in MTB and BCG using 1 peptide 

per protein criteria in any of the six runs and ≥ 2 peptides per protein criteria
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Figure 2. Membrane-associated proteins with predicted export signal peptides or 
transmembrane domains
The primary amino acid sequence of the 2,203 total proteins identified in the membrane 

fractions of MTB and BCG were analyzed for the presence of aminoterminal export signal 

peptides or transmembrane domains. A total of 440 proteins contain probable 

transmembrane domains predicted by the TMHMM 2.030 (omitting TMHMM 

transmembrane predictions likely representing N-terminal signal peptides). Additionally, 

140 proteins are predicted by SignalP31 or TatP32 to contain either Sec or Tat export signal 

peptides, which would target them for export out of the cytoplasm by conserved bacterial 

secretion machinery. Of the 140 proteins with putative export signals, 54% are possible 

lipoproteins with lipobox motifs in their signal peptides predicted by LipoP34 or by using a 

lipoprotein pattern search against the M. tuberculosis H37Rv genome35.
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Figure 3. Functional categories of proteins identified in MTB and/or BCG
The 2,203 proteins identified in both biological replicates of either M. tuberculosis H37Rv 

or M. bovis BCG represented several functional categories.
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Figure 4. Label-free quantification of proteins from M. tuberculosis (MTB) and M. bovis BCG
(A) To identify proteins with differences in abundance between the membranes of MTB and 

BCG, a label-free quantification analysis based on peak area was performed. The measured 

area under the curve of m/z and retention time aligned extracted ion chromatogram of each 

peptide was performed via the label-free quantitation module found in MaxQuant [ver. 

1.2.2.5]. We obtained relative abundance ratios for 2,203 proteins (black diamonds), shown 

here plotted by BCG/MTB ratio (log2 scale) and pvalue (−log10 scale). Of these shared 

proteins, 294 were statistically different (p≤0.05, t-test) in abundance between strains by 2-
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fold or more yellow squares). Proteins with LFQ ratios confirmed by immunoblot are shown 

as red circles (SigA-levels unchanged) and (LpqH-lower level in BCG, albeit not 

significant). Also labeled are proteins under-represented in the BCG that correspond to PAT 

synthesis (blue diamonds) and the ESX-3 secretion system (green squares). (B) The 

correlation between log2 (BGG/MTB) ratios obtained from two biological replicates of 

MTB and BCG. Nonparemetric quantile densities are shown between the two replicates with 

an orthogonal fit
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Figure 5. Genomic loci encoding proteins less abundant in the M. bovis BCG membrane 
compared to M. tuberculosis H37Rv (MTB) membrane
Among the differences observed between the MTB and BCG membrane proteomes were 

proteins involved in polyacyltrehalose (PAT) biosynthesis (A) and specialized protein 

secretion via the ESX-3 system (B). Genes encoding proteins that were determined by LFQ 

analysis to be under-represented in BCG are shaded in black or grey and the corresponding 

log2(BCG/MTB) ratio is provided (imputed values). Those genes shaded black encode 

proteins whose LFQ ratios had p values of 0.05 or less.
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Figure 6. Immunoblot confirmation of relative protein abundances between the M. tuberculosis 
H37Rv and M. bovis BCG membrane fractions
The same membrane fractions (MEM) used for MS analysis were also analyzed by 

immunoblot using antibodies against four representative proteins. Also included are the 

whole cell lysates (WCL) from which the corresponding membrane fractions were derived. 

The isocitrate lysase Icl1 and malate synthase GlcB represent proteins that were 

significantly reduced in the BCG membrane as determined by our MS analysis. The sigma 

factor SigA produced a label-free quantitation log2(BCG/MTB) ratio of 0.759 with a p value 

of 0.555, indicating no difference in abundance between the strains. The LpqH lipoprotein 

was determined to be lower in abundance in the BCG membrane than MTB (−2.995) albeit 

with a p value of 0.178.
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