31 research outputs found
Intraoperative cerebral hemodynamic monitoring during carotid endarterectomy via diffuse correlation spectroscopy and near-infrared spectroscopy
Objective: This pilot study aims to show the feasibility of noninvasive and real-time cerebral hemodynamic monitoring during carotid endarterectomy (CEA) via diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS). Methods: Cerebral blood flow index (CBFi) was measured unilaterally in seven patients and bilaterally in seventeen patients via DCS. In fourteen patients, hemoglobin oxygenation changes were measured bilaterally and simultaneously via NIRS. Cerebral autoregulation (CAR) and cerebrovascular resistance (CVR) were estimated using CBFi and arterial blood pressure data. Further, compensatory responses to the ipsilateral hemisphere were investigated at different contralateral stenosis levels. Results: Clamping of carotid arteries caused a sharp increase of CVR (~70%) and a marked decrease of ipsilateral CBFi (57%). From the initial drop, we observed partial recovery in CBFi, an increase of blood volume, and a reduction in CVR in the ipsilateral hemisphere. There were no significant changes in compensatory responses between different contralateral stenosis levels as CAR was intact in both hemispheres throughout the CEA phase. A comparison between hemispheric CBFi showed lower ipsilateral levels during the CEA and post-CEA phases (p < 0.001, 0.03). Conclusion: DCS alone or combined with NIRS is a useful monitoring technique for real-time assessment of cerebral hemodynamic changes and allows individualized strategies to improve cerebral perfusion during CEA by identifying different hemodynamic metrics.</p
TRY plant trait database â enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Factors affecting successful localization of the central sulcus using the somatosensory evoked potential phase reversal technique.
BackgroundPerirolandic surgery is associated with an increased risk of postoperative neurological deficit that can be reduced by accurate recognition of the location of sensorimotor cortex. The median somatosensory evoked potential (MSSEP) phase reversal technique (PRT) reliably identifies the central sulcus (CS) intraoperatively, but does require additional surgical time. Awareness of factors that lengthen the time required for MSSEP PRT has important implications for surgical planning.ObjectiveTo identify factors that affect the time required for CS localization via MSSEP PRT.MethodsMultivariate Cox regression analysis, applied in 100 consecutive cases of perirolandic surgery at a single institution from 2005 to 2010, during which CS localization was attempted via a standardized MSSEP PRT.ResultsThe CS was reliably identified in 77 cases. The mean time to identification was 5 minutes (SD = 5; range, 1-20 minutes). Lesion location either very close to the CS (within the postcentral gyrus) or at an intermediate distance (with edema extending very close to the CS) independently decreased the rate at which the CS was identified by 73% (hazard ratio: 0.27, P < .001) and 55% (hazard ratio: 0.45, P = .007), respectively. Highly destructive pathology reduced this rate by 42% (hazard ratio: 0.58, P = .03), after adjusting for other important factors. Epidural recording, age, and the presence of a burst suppression pattern on the electroencephalogram had no effect.ConclusionMSSEP PRT is an effective method for CS identification and only marginally lengthens the operative time. However, difficulty in CS localization can be expected in the presence of postcentral gyrus lesions, edema distorting perirolandic anatomy, and with highly destructive pathology
Recommended from our members
Factors affecting successful localization of the central sulcus using the somatosensory evoked potential phase reversal technique.
BackgroundPerirolandic surgery is associated with an increased risk of postoperative neurological deficit that can be reduced by accurate recognition of the location of sensorimotor cortex. The median somatosensory evoked potential (MSSEP) phase reversal technique (PRT) reliably identifies the central sulcus (CS) intraoperatively, but does require additional surgical time. Awareness of factors that lengthen the time required for MSSEP PRT has important implications for surgical planning.ObjectiveTo identify factors that affect the time required for CS localization via MSSEP PRT.MethodsMultivariate Cox regression analysis, applied in 100 consecutive cases of perirolandic surgery at a single institution from 2005 to 2010, during which CS localization was attempted via a standardized MSSEP PRT.ResultsThe CS was reliably identified in 77 cases. The mean time to identification was 5 minutes (SD = 5; range, 1-20 minutes). Lesion location either very close to the CS (within the postcentral gyrus) or at an intermediate distance (with edema extending very close to the CS) independently decreased the rate at which the CS was identified by 73% (hazard ratio: 0.27, P < .001) and 55% (hazard ratio: 0.45, P = .007), respectively. Highly destructive pathology reduced this rate by 42% (hazard ratio: 0.58, P = .03), after adjusting for other important factors. Epidural recording, age, and the presence of a burst suppression pattern on the electroencephalogram had no effect.ConclusionMSSEP PRT is an effective method for CS identification and only marginally lengthens the operative time. However, difficulty in CS localization can be expected in the presence of postcentral gyrus lesions, edema distorting perirolandic anatomy, and with highly destructive pathology
Recommended from our members
Dorsal column mapping via phase reversal method: the refined technique and clinical applications.
BackgroundSafe resection of intramedullary spinal cord tumors can be challenging, because they often alter the cord anatomy. Identification of neurophysiologically viable dorsal columns (DCs) and of neurophysiologically inert tissue, eg, median raphe (MR), as a safe incision site is crucial for avoiding postoperative neurological deficits. We present our experience with and improvements made to our previously described technique of DC mapping, successfully applied in a series of 12 cases.ObjectiveTo describe a new, safe, and reliable technique for intraoperative DC mapping.MethodsThe right and left DCs were stimulated by using a bipolar electric stimulator and the triggered somatosensory evoked potentials recorded from the scalp. Phase reversal and amplitude changes of somatosensory evoked potentials were used to neurophysiologically identify the laterality of DCs, the inert MR, as well as other safe incision sites.ResultsThe MR location was neurophysiologically confirmed in all patients in whom this structure was first visually identified as well as in those in whom it was not, with 1 exception. DCs were identified in all patients, regardless of whether they could be visually identified. In 3 cases, negative mapping with the use of this method enabled the surgeon to reliably identify additional inert tissue for incision. None of the patients had postoperative worsening of the DC function.ConclusionOur revised technique is safe and reliable, and it can be easily incorporated into routine intramedullary spinal cord tumor resection. It provides crucial information to the neurosurgeon to prevent postoperative neurological deficits