729 research outputs found

    Contaminant fluxes across ecosystems mediated by aquatic insects

    Get PDF
    Metals and organic contaminants in aquatic systems affect the coupling of aquatic and terrestrial ecosystems through two pathways: contaminant-induced effects on insect emergence and emergence-induced contaminant transfer. Consequently, the impact of aquatic contaminants on terrestrial ecosystems can be driven by modifications in the quantity and quality of adult aquatic insects serving as prey or contaminants entering terrestrial food webs as part of the diet of terrestrial predators. Here, we provide an overview of recent advances in the field, separating metals from organic contaminants due to their differential propensity to bioaccumulate and thus their potential contribution to either of the two pathways. Finally, this review highlights the knowledge gap in the relative impact of these pathways on terrestrial insectivores

    Leaf litter breakdown along an elevational gradient in Australian alpine streams

    Get PDF
    The breakdown of allochthonous organic matter, is a central step in nutrient cycling in stream ecosystems. There is concern that increased temperatures from climate change will alter the breakdown rate of organic matter, with important consequences for the ecosystem functioning of alpine streams. This study investigated the rate of leaf litter breakdown and how temperature and other factors such as microbial and invertebrate activities influenced this over elevational and temporal gradients. Dried leaves of Snow Gum (Eucalyptus pauciflora) and cotton strips were deployed in coarse (6 mm), and fine (50 mu m) mesh size bags along an 820 m elevation gradient. Loss of mass in leaf litter and cotton tensile strength per day (k per day), fungal biomass measured as ergosterol concentration, invertebrate colonization of leaf litter, and benthic organic matter (mass and composition) were determined. Both microbial and macroinvertebrate activities were equally important in leaf litter breakdown with the abundance of shredder invertebrate taxa. The overall leaf litter breakdown rate and loss of tensile strength in cotton strips (both k per day) were greater during warmer deployment periods and at lower elevations, with significant positive relationships between mean water temperature and leaf breakdown and loss of tensile strength rate, but no differences between sites, after accounting for the effects of temperature. Despite considerably lower amounts of benthic organic matter in streams above the tree line relative to those below, shredders were present in coarse mesh bags at all sites. Ergosterol concentration was greater on leaves in coarse mesh bags than in fine mesh bags, implying differences in the microbial communities. The importance of water temperatures on the rate of leaf litter breakdown suggests the potential effects of climate change-induced temperature increases on ecological processes in such streams

    Lagrangian planetary equations in Schwarzschild space--time

    Get PDF
    We have developed a method to study the effects of a perturbation to the motion of a test point--like object in a Schwarzschild spacetime. Such a method is the extension of the Lagrangian planetary equations of classical celestial mechanics into the framework of the full theory of general relativity. The method provides a natural approach to account for relativistic effects in the unperturbed problem in an exact way.Comment: 7 pages; revtex; accepted for publication in Class. Quantum Gra

    Leaf Species-Dependent Fungicide Effects on the Function and Abundance of Associated Microbial Communities

    Get PDF
    Microbially-mediated leaf litter decomposition is a critical ecosystem function in running waters within forested areas, which can be affected by fungicides. However, fungicide effects on leaf litter decomposition have been investigated almost exclusively with black alder leaves, a leaf species with traits favourable to consumers (i.e., low recalcitrance and high nutrient content). At the same time, little is known about fungicide effects on microbial colonisation and decomposition of other leaf species with less favourable traits. In this 21 day lasting study, we explore the effects of increasing fungicide sum concentrations (0-3000 mu g/L) on microbial colonisation and decomposition of three leaf species (black alder, Norway maple and European beech) differing in terms of recalcitrance and nutrient content. Leaf litter decomposition rate, leaf-associated fungal biomass and bacterial density were quantified to observe potential effects at the functional level. Beech, as the species with the least favourable leaf traits, showed a substantially lower decomposition rate (50%) in absence of fungicides than alder and maple. In the presence of high fungicide concentrations (300-3000 mu g/L), beech showed a concentration-related decrease not only in microbial leaf litter decomposition but also fungal biomass. This suggests that favourable traits of leaf litter (as for alder and maple) enable leaf-associated microorganisms to acquire leaf-bound energy more easily to withstand potential effects induced by fungicide exposure. Our results indicate the need to deepen our understanding on how leaf species' traits interact with the impact of chemical stressors on the leaf decomposition activity of microbial communities

    Characterization of fast-growing foams in bottling processes by endoscopic imaging and convolutional neural networks

    Get PDF
    Regardless of whether the occurrence of foams in industrial processes is desirable or not, the knowledge about the characteristics of their formation and morphology is crucial. This study addresses the measuring of characteristics in foam and the trailing bubbly liquid that result from air bubble entrainment by a plunging jet in the environment of industry-like bottling process es of non-carbonated beverages. Typically encountered during the bottling of fruit juices, this process configuration is characterized by very fast filling speeds with high dynamic system parameter changes. Especially in multiphase systems with a sensitive disperse phase like gas bubbles, the task of its measurement turns out to be difficult. The aim of the study is to develop and employ an image processing capability in real geometries under realistic industrial conditions, e.g. as opposed to a narrow measurement chamber. Therefore, a typically sized test bottle was only slightly modified to adapt an endoscopic measurement technique and to acquire image data in a minimally invasive way. Two convolutional neural networks (CNNs) were employed to analyze irregular non-overlapping bubbles and circular overlapping bubbles. CNNs provide a robust object recognition for varying image qualities and therefore can cover a broad range of process conditions at the cost of a time-consuming training process. The obtained single bubble and population measurements allow approximation, correlation and interpretation of the bubble size and shape distributions within the foam and in the bubbly liquid. The classification of the measured foam morphologies and the influence of operating conditions are presented. The applicability to the described test case as an industrial multiphase process reveals high potential for a huge field of operations for particle size and shape measurement by the introduced method

    The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit

    Get PDF
    The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-Ī²) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-Ī²), and epsilon carotene hydroxylase (CRH-Ļµ) showed some variation in gene expression. The LCY-Ī² gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-Ī² gene

    Antibiotics as a silent driver of climate change? A case study investigating methane production in freshwater sediments

    Get PDF
    Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2) and is inter alia produced in natural freshwater ecosystems. Given the rise in CH4 emissions from natural sources, researchers are investigating environmental factors and climate change feedbacks to explain this increment. Despite being omnipresent in freshwaters, knowledge on the influence of chemical stressors of anthropogenic origin (e.g., antibiotics) on methanogenesis is lacking. To address this knowledge gap, we incubated freshwater sediment under anaerobic conditions with a mixture of five antibiotics at four levels (from 0 to 5000 mu g/L) for 42 days. Weekly measurements of CH4 and CO2 in the headspace, as well as their compound-specific delta C-13, showed that the CH4 production rate was increased by up to 94% at 5000 mu g/L and up to 29% at field-relevant concentrations (i.e., 50 mu g/L). Metabarcoding of the archaeal and eubacterial 16S rRNA gene showed that effects of antibiotics on bacterial community level (i.e., species composition) may partially explain the observed differences in CH4 production rates. Despite the complications of transferring experimental CH4 production rates to realistic field conditions, the study indicated that chemical stressors contribute to the emissions of greenhouse gases by affecting the methanogenesis in freshwaters

    Fungal-fungal and fungal-bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity

    Get PDF
    Fungi produce a variety of extracellular enzymes, making recalcitrant substrates bioavailable. Thus, fungi are central for the decomposition of dead organic matter such as leaf litter. Despite their ecological importance, our understanding of relationships between fungal species diversity and ecosystem functioning is limited, especially with regard to aquatic habitats. Moreover, fungal interactions with other groups of microorganisms such as bacteria are rarely investigated. This lack of information may be attributed to methodological limitations in tracking the biomass of individual fungal species in communities, impeding a detailed assessment of deviations from the overall performance expected from the sum of individual species' performances, so-called net diversity effects (NDEs). We used fungal species-specific biomolecular tools to target fungal-fungal and fungal-bacterial interactions on submerged leaves using four cosmopolitan aquatic fungal species and a stream microbial community dominated by bacteria. In microcosms, we experimentally manipulated fungal diversity and bacterial absence/presence and assessed functional performances and fungal community composition after 14 d of incubation. Fungal community data were used to evaluate NDEs on leaf colonization. The individual fungal species were functionally distinct and fungal cultures were on average more efficient than the bacterial culture. In absence of bacteria, NDEs correlated with growth rate (negatively) and genetic divergence (positively), but were predominantly negative, suggesting that higher fungal diversity led to a lower colonization success (niche overlap). In both absence and presence of bacteria, the overall functional performances of the communities were largely defined by their composition (i.e., no interactions at the functional level). In the presence of bacteria, NDEs correlated with genetic divergence (positively) and were largely positive, suggesting higher fungal diversity stimulated colonization (niche complementarity). This stimulation may be driven by a bacteria-induced inhibition of fungal growth, alleviating competition among fungi. Resulting feedback loops eventually promote fungal coexistence and synergistic interactions. Nonetheless, overall functional performances are reduced compared to bacteria-free cultures. These findings highlight the necessity to conduct future studies, investigating biodiversity-ecosystem functioning relationships using artificial systems, without exclusion of key organisms naturally co-occurring in the compartment of interest. Otherwise, study outcomes might not reflect true ecological relationships and ultimately misguide conservation strategies

    As above, so below? Effects of fungicides on microbial organic matter decomposition are stronger in the hyporheic than in the benthic zone

    Get PDF
    Microbial organic matter decomposition is a critical ecosystem function, which can be negatively affected by chemicals. Although the majority of organic matter is stored in sediments, the impact of chemicals has exclusively been studied in benthic systems. To address this knowledge gap, we assessed the impact of a fungicide mixture at three concentrations on the decomposition of black alder leaves in the benthic and hyporheic zone. We targeted two sediment treatments characterized by fine and coarse grain sizes (1-2 vs. 2-4 mm). Besides microbial communities' functioning (i.e., decomposition), we determined their structure through microbial biomass estimates and community composition. In absence of fungicides, leaf decomposition, microbial biomass estimates and fungal sporulation were lower in the hyporheic zone, while the importance of bacteria was elevated. Leaf decomposition was reduced (40%) under fungicide exposure in fine sediment with an effect size more than twice as high as in the benthic zone (15%). These differences are likely triggered by the lower hydraulic conductivity in the hyporheic zone influencing microbial dispersal as well as oxygen and nutrient fluxes. Since insights from the benthic zone are not easily transferable, these results indicate that the hyporheic zone requires a higher recognition with regard to ecotoxicological effects on organic matter decomposition

    Mapping Cortical Degeneration in ALS with Magnetization Transfer Ratio and Voxel-Based Morphometry

    Get PDF
    Pathological and imaging data indicate that amyotrophic lateral sclerosis (ALS) is a multisystem disease involving several cerebral cortical areas. Advanced quantitative magnetic resonance imaging (MRI) techniques enable to explore in vivo the volume and microstructure of the cerebral cortex in ALS. We studied with a combined voxel-based morphometry (VBM) and magnetization transfer (MT) imaging approach the capability of MRI to identify the cortical areas affected by neurodegeneration in ALS patients. Eighteen ALS patients and 18 age-matched healthy controls were examined on a 1.5T scanner using a high-resolution 3D T1 weighted spoiled gradient recalled sequence with and without MT saturation pulse. A voxel-based analysis (VBA) was adopted in order to automatically compute the regional atrophy and MT ratio (MTr) changes of the entire cerebral cortex. By using a multimodal image analysis MTr was adjusted for local gray matter (GM) atrophy to investigate if MTr changes can be independent of atrophy of the cerebral cortex. VBA revealed several clusters of combined GM atrophy and MTr decrease in motor-related areas and extra-motor frontotemporal cortex. The multimodal image analysis identified areas of isolated MTr decrease in premotor and extra-motor frontotemporal areas. VBM and MTr are capable to detect the distribution of neurodegenerative alterations in the cortical GM of ALS patients, supporting the hypothesis of a multi-systemic involvement in ALS. MT imaging changes exist beyond volume loss in frontotemporal cortices
    • ā€¦
    corecore