1,150 research outputs found

    Clinical-evolutional particularities of the cryoglobulinemic vasculitis in the case of a patient diagnosed with hepatitis C virus in the predialitic phase

    Get PDF
    Hepatitis C virus (HCV) represents a fundamental issue for public health, with long term evolution and the gradual appearance of several complications and associated pathologies. One of these pathologies is represented by cryoglobulinemic vasculitis, a disorder characterized by the appearance in the patient’s serum of the cryoglobulins, which typically precipitate at temperatures below normal body temperature (37°C) and dissolve again if the serum is heated. Here, we describe the case of a patient diagnosed with HCV that, during the evolution of the hepatic disease, developed a form of cryoglobulinemic vasculitis. The connection between the vasculitis and the hepatic disorder was revealed following treatment with interferon, with the temporary remission of both pathologies and subsequent relapse at the end of the 12 months of treatment, the patient becoming a non-responder. The particularity of the case is represented by both the severity of the vasculitic disease from its onset and the deterioration of renal function up to the predialitic phase, a situation not typical of the evolution of cryoglobulinemia. Taking into account the hepatic disorder, the inevitable evolution towards cirrhosis, and the risk of developing the hepatocellular carcinoma, close monitoring is necessary

    Results of Evolution Supervised by Genetic Algorithms

    Full text link
    A series of results of evolution supervised by genetic algorithms with interest to agricultural and horticultural fields are reviewed. New obtained original results from the use of genetic algorithms on structure-activity relationships are reported.Comment: 6 pages, 1 Table, 2 figure

    Pancreatogenic type 3C diabetes

    Get PDF
    Background. The relationship between chronic pancreatitis and diabetes is well established. This form of diabetes is secondary to exocrine pancreatic disorder and is known as diabetes mellitus type 3c (T3cDM). Materials and Methods. In this retrospective study we included 261 patients, 59 patients being diagnosed with chronic pancreatitis and secondary diabetes mellitus, and admitted in the Fundeni Clinical Institute, 2nd Department of Gastroenterology or N.C. Paulescu Institute/ Carol Davila University of Medicine and Pharmacy. Results and Discussions. Patients were 22.2% women and 77.8% men, with an average age of 56.8 years and 53.4 years respectively. 63% came from urban areas. The mean duration of chronic pancreatitis was six years. Non-diabetic patients were compared with patients who were previously diagnosed with T3cDM and who had been analyzed for body mass index (BMI). Imaging investigations were also performed to confirm pseudotumors or pancreatic tumours. Patients already considered non-diabetic had basal blood glucose values and were mostly overweight and obese. In this context, insulin resistance cannot be excluded for this group of patients. Conclusions. T3cDM is a new pathological entity that needs to be explored more deeply, and that should benefit from both a diagnostic stratification and treatment

    Nonlinear Near-Field Microwave Microscope For RF Defect Localization in Superconductors

    Full text link
    Niobium-based Superconducting Radio Frequency (SRF) cavity performance is sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, it is important to develop a new kind of wide bandwidth microwave microscopy with localized and strong RF magnetic fields. By taking advantage of write head technology widely used in the magnetic recording industry, one can obtain ~200 mT RF magnetic fields, which is on the order of the thermodynamic critical field of Nb, on submicron length scales on the surface of the superconductor. We have successfully induced the nonlinear Meissner effect via this magnetic write head probe on a variety of superconductors. This design should have a high spatial resolution and is a promising candidate to find localized defects on bulk Nb surfaces and thin film coatings of interest for accelerator applications.Comment: 4 pages, 6 figures Journal-ref: 2010 Applied Superconductivity Conferenc

    Spin dynamics in InAs-nanowire quantum-dots coupled to a transmission line

    Full text link
    We study theoretically electron spins in nanowire quantum dots placed inside a transmission line resonator. Because of the spin-orbit interaction, the spins couple to the electric component of the resonator electromagnetic field and enable coherent manipulation, storage, and read-out of quantum information in an all-electrical fashion. Coupling between distant quantum-dot spins, in one and the same or different nanowires, can be efficiently performed via the resonator mode either in real time or through virtual processes. For the latter case we derive an effective spin-entangling interaction and suggest means to turn it on and off. We consider both transverse and longitudinal types of nanowire quantum-dots and compare their manipulation timescales against the spin relaxation times. For this, we evaluate the rates for spin relaxation induced by the nanowire vibrations (phonons) and show that, as a result of phonon confinement in the nanowire, this rate is a strongly varying function of the spin operation frequency and thus can be drastically reduced compared to lateral quantum dots in GaAs. Our scheme is a step forward to the formation of hybrid structures where qubits of different nature can be integrated in a single device

    Yu-Shiba-Rusinov bound states versus topological edge states in Pb/Si(111)

    Full text link
    There is presently a tremendous activity around the field of topological superconductivity and Majorana fermions. Among the many questions raised, it has become increasingly important to establish the topological or non-topological origin of features associated with Majorana fermions such as zero-bias peaks. Here, we compare in-gap features associated either with isolated magnetic impurities or with magnetic clusters strongly coupled to the atomically thin superconductor Pb/Si(111). We study this system by means of scanning tunneling microscopy and spectroscopy (STM/STS). We take advantage of the fact that the Pb/Si(111) monolayer can exist either in a crystal-ordered phase or in an incommensurate disordered phase to compare the observed spectroscopic features in both phases. This allows us to demonstrate that the strongly resolved in-gap states we found around the magnetic clusters in the disordered phase of Pb have a clear topological origin.Comment: 11 pages, 5 figures. To be published in European Physical Journal Special Topics.dedicated to the conference FQMT'1

    EXPERIMENTAL RESEARCHES REGARDING THE DENSIMETRIC SEPARATOR FOR CLEANING OF THE WHEAT DESTINED TO MILLING

    Get PDF
    The cleaning of cereal seeds represent an essential operation of the conditioning chain. Taking into account all considerations, the experts׳ attention has been drawn by the study of phenomena which influence upon the impurities separation process, aiming at a maximum reduction impurities. The paper presents the constructive and functional scheme of an densimetric separator driven by means of electrical motovibrators, in view of theirs utilisation with best results for the drive of vibrating sieves. The results of the experimental researches are highlighted, after which the optimal operating parameters were established

    Asymptotic Stability for a Class of Metriplectic Systems

    Full text link
    Using the framework of metriplectic systems on Rn\R^n we will describe a constructive geometric method to add a dissipation term to a Hamilton-Poisson system such that any solution starting in a neighborhood of a nonlinear stable equilibrium converges towards a certain invariant set. The dissipation term depends only on the Hamiltonian function and the Casimir functions

    Two-dimensional topological superconductivity in Pb/Co/Si(111)

    Get PDF
    Just like insulators can host topological Dirac states at their edges, superconductors can also exhibit topological phases characterized by Majorana edge states. Remarkable zero-energy states have been recently observed at the two ends of proximity induced superconducting wires, and were interpreted as localized Majorana end states in one-dimensional (1D) topological superconductor. By contrast, propagating Majorana states should exist at the 1D edges of two-dimensional (2D) topological superconductors. Here we report the direct observation of dispersive in-gap states surrounding topological superconducting domains made of a single atomic layer of Pb covering magnetic islands of Co/Si(111). We interpret the observed continuous dispersion across the superconducting gap in terms of a spatial topological transition accompanied by a chiral edge mode and residual gaped helical edge states. Our experimental approach enables the engineering and control of a large variety of novel quantum phases. This opens new horizons in the field of quantum materials and quantum electronics where the magnetization of the domains could be used as a control parameter for the manipulation of topological states.Comment: 12 pages, 3 figure
    corecore