15 research outputs found

    Pilot optical alignment

    Get PDF
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 ÎŒm and 550 ÎŒm with an angular resolution of about two arcminutes. The observations performed during the two first flights performed from Timmins, Ontario Canada, and from Alice-springs, Australia, respectively in September 2015 and in April 2017 have demonstrated the good performances of the instrument. Pilot optics is composed of an off axis Gregorian type telescope combined with a refractive re-imager system. All optical elements, except the primary mirror, which is at ambient temperature, are inside a cryostat and cooled down to 3K. The whole optical system is aligned on ground at room temperature using dedicated means and procedures in order to keep the tight requirements on the focus position and ensure the instrument optical performances during the various phases of a flight. We’ll present the optical performances and the firsts results obtained during the two first flight campaigns. The talk describes the system analysis, the alignment methods, and finally the inflight performances

    Pilot optical alignment

    Full text link
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 ÎŒm (1.2THz) with an angular resolution about two arc-minutes. The observations performed during the first flight in September 2015 at Timmins, Ontario Canada, have demonstrated the optical performances of the instrument

    PILOT: measuring the FIR astrophysical dust emission

    No full text
    Measuring precisely the faint polarization of the Far-Infrared and sub-millimetre sky is the next observational challenge of modern astronomy. In particular, detection the B-mode polarization from the Cosmic Microwave Background (CMB) shall reveal the inflationary periods in the very early universe. Such measurements will require very high sensitivity and very low instrumental systematic effects. As for measurements of the CMB intensity, sensitive measurements of the CMB polarization will be made difficult by the presence of foreground emission from our own Milky Way, which is orders of magnitude higher than the faint polarized cosmological signal. Such foreground emission will have to be understood very accurately and removed from cosmological measurements. This polarized emission is also interesting in itself, since it brings information relevant to star formation processes, about the orientation of the magnetic field in our Galaxy through the alignment of dust grains. I will first summarize our current knowledge in this field. I will then describe the PILOT balloon-borne experiment project, which is dedicated to measuring precisely the polarization of faint diffuse dust emission in the Far-Infrared in our Galaxy

    The PILOT optical alignment for its first flight

    No full text
    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 ”m with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015

    PILOT optical alignment

    Get PDF
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 ÎŒm and 550 ÎŒm with an angular resolution of about two arcminutes. The observations performed during the two first flights performed from Timmins, Ontario Canada, and from Alice-springs, Australia, respectively in September 2015 and in April 2017 have demonstrated the good performances of the instrument. Pilot optics is composed of an off axis Gregorian type telescope combined with a refractive re-imager system. All optical elements, except the primary mirror, which is at ambient temperature, are inside a cryostat and cooled down to 3K. The whole optical system is aligned on ground at room temperature using dedicated means and procedures in order to keep the tight requirements on the focus position and ensure the instrument optical performances during the various phases of a flight. We’ll present the optical performances and the firsts results obtained during the two first flight campaigns. The talk describes the system analysis, the alignment methods, and finally the inflight performances

    Pilot optical alignment

    No full text
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 ÎŒm and 550 ÎŒm with an angular resolution of about two arcminutes. The observations performed during the two first flights performed from Timmins, Ontario Canada, and from Alice-springs, Australia, respectively in September 2015 and in April 2017 have demonstrated the good performances of the instrument. Pilot optics is composed of an off axis Gregorian type telescope combined with a refractive re-imager system. All optical elements, except the primary mirror, which is at ambient temperature, are inside a cryostat and cooled down to 3K. The whole optical system is aligned on ground at room temperature using dedicated means and procedures in order to keep the tight requirements on the focus position and ensure the instrument optical performances during the various phases of a flight. We'll present the optical performances and the firsts results obtained during the two first flight campaigns. The talk describes the system analysis, the alignment methods, and finally the inflight performances

    Inflight performance of the PILOT balloon-borne experiment

    No full text
    PILOT is a stratospheric experiment designed to measure the polarization of dust FIR emission, towards the diffuse interstellar medium. The first PILOT flight was carried out from Timmins in Ontario-Canada on September 20th 2015. The flight has been part of a launch campaign operated by the CNES, which has allowed to launch 4 experiments, including PILOT. The purpose of this paper is to describe the performance of the instrument in flight and to perform a first comparison with those achieved during ground tests. The analysis of the flight data is on-going, in particular the identification of instrumental systematic effects, the minimization of their impact and the quantification of their remaining effect on the polarization data. At the end of this paper, we shortly illustrate the quality of the scientific observations obtained during this first flight, at the current stage of systematic effect removal

    PILOT optical alignment

    No full text
    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 Όm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    The PILOT optical alignment for its first flight

    Get PDF
    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 ”m with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 201

    PILOT end-to-end calibration results

    No full text
    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne astronomy experiment designed to study the linear polarization of the Far Infra-Red emission, 240 ~im (1.2 THz) and 550 ~tm (545 GHz) with an angular resolution of a few minutes of arc, from dust grains present in the diffuse interstellar medium, in our Galaxy and nearby galaxies. The polarisation of light is measured using a half-wave plate (HWP). We performed the instrumental tests from 2012 to 2014 and are planning a first scientific flight in September 2015 from Timmins, Ontario, Canada. This paper describes the measurement principles of PILOT, the results of the laboratory tests and its sky coverage. These include defocus tests, transmission measurements using a Fourier Transform Spectrometer at various positions of the HWP, and identification of internal straylight
    corecore