306 research outputs found

    The direct hydrothermal deposition of cobalt-doped MoS2 onto fluorine-doped SnO2 substrates for catalysis of the electrochemical hydrogen evolution reaction

    Get PDF
    Metal chalcogenides, and doped molybdenum sulfides in particular, have considerable potential as earth-abundant electrocatalysts for the hydrogen evolution reaction. This is especially true in the case of solar-to-hydrogen devices, where an ability to deposit these materials on transparent substrates is therefore desirable. Hydrothermal methods are perhaps the most common route by which metal chalcogenide materials suitable for the hydrogen evolution reaction are produced. Such methods are simple and scalable, but the direct hydrothermal deposition of metal chalcogenides on transparent oxide electrodes has hitherto never been reported. Such an advance would greatly facilitate the expansion of the field by removing the requirement for separate hydrothermal-synthesis and catalyst-deposition steps. In this paper, we show that the ternary chalcogenide Co2Mo9S26 can be synthesised on a fluorine-doped tin oxide substrate by hydrothermal methods directly from solutions of the simple metal salts. These films display good activity for the hydrogen evolution reaction from acid solution, achieving current densities of 10 mA cm−2 at 260 mV overpotential with a Tafel slope of 64 mV per decade. Moreover, the resulting films can be made to be translucent, a very useful property which would allow light to be transmitted through the catalyst to an underlying light-harvesting array in any solar-to-hydrogen device employing this material at the cathode

    Tuning and mechanistic insights of metal chalcogenide molecular catalysts for the hydrogen-evolution reaction

    Get PDF
    The production of hydrogen through water splitting using earth-abundant metal catalysts is a promising pathway for converting solar energy into chemical fuels. However, existing approaches for fine stoichiometric control, structural and catalytic modification of materials by appropriate choice of earth abundant elements are either limited or challenging. Here we explore the tuning of redox active immobilised molecular metal-chalcoxide electrocatalysts by controlling the chalcogen or metal stoichiometry and explore critical aspects of the hydrogen evolution reaction (HER). Linear sweep voltammetry (LSV) shows that stoichiometric and structural control leads to the evolution of hydrogen at low overpotential with no catalyst degradation over 1000 cycles. Density functional calculations reveal the effect of the electronic and structural features and confer plausibility to the existence of a unimolecular mechanism in the HER process based on the tested hypotheses. We anticipate these findings to be a starting point for further exploration of molecular catalytic systems

    Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism

    Get PDF
    Despite the scientific evidence supporting their biostimulant activity, the molecular mechanism(s) underlying the activity of protein hydrolysates (PHs) and the specificity among different products are still poorly explored. This work tested five different protein hydrolysates, produced from different plant sources using the same enzymatic approach, for their ability to promote rooting in tomato cuttings following quick dipping. Provided that all the different PHs increased root length (45\u201393%) and some of them increased root number (37\u201356%), untargeted metabolomics followed by multivariate statistics and pathway analysis were used to unravel the molecular processes at the basis of the biostimulant activity. Distinct metabolomic signatures could be found in roots following the PHs treatments. In general, PHs shaped the phytohormone profile, modulating the complex interaction between cytokinins and auxins, an interplay playing a pivotal role in root development, and triggered a down accumulation of brassinosteroids. Concerning secondary metabolism, PHs induced the accumulation of aliphatic glucosinolates, alkaloids, and phenylpropanoids, potentially eliciting crop resilience to stress conditions. Here, we confirm that PHs may have a hormone-like activity, and that their application can modulate plant growth, likely interfering with signaling processes. Noteworthy, the heterogenicity of the botanical origin supported the distinctive and peculiar metabolomic responses we observed across the products tested. While supporting their biostimulant activity, these findings suggest that a generalized crop response to PHs cannot be defined and that specific effects are rather to be investigated

    Dataset on the effects of different pre-harvest factors on the metabolomics profile of lettuce (Lactuca sativa l.) leaves

    Get PDF
    The study of the relationship between cultivated plants and environmental factors can provide information ranging from a deeper understanding of the plant biological system to the development of more effective management strategies for improving yield, quality, and sustainability of the produce. In this article, we present a comprehensive metabolomics dataset of two phytochemically divergent lettuce (Lactuca sativa L.) butterhead varieties under different growing conditions. Plants were cultivated in hydroponics in a growth chamber with ambient control. The pre-harvest factors that were independently investigated were light intensity (two levels), the ionic strength of the nutrient solutions (three levels), and the molar ratio of three macroelements (K, Mg, and Ca) in the nutrient solution (three levels). We used an untargeted, mass-spectrometry-based approach to characterize the metabolomics profiles of leaves harvested 19 days after transplant. The data revealed the ample impact on both primary and secondary metabolism and its range of variation. Moreover, our dataset is useful for uncovering the complex effects of the genotype, the environmental factor(s), and their interaction, which may deserve further investigation

    Intraspecific variability largely affects the leaf metabolomics response to isosmotic macrocation variations in two divergent lettuce (Lactuca sativa L.) varieties

    Get PDF
    Mineral elements are essential for plant growth and development and strongly affect crop yield and quality. To cope with an everchanging environment, plants have developed specific responses to combined nutrient variations. In this work, we investigated the effects of multifactorial treatments with three macrocations (K, Ca, and Mg) on lettuce (Lactuca sativa L.) varieties that strongly diverge in leaf pigmentation (full red or green). Specifically, we monitored main leaf parameters and metabolomics profiles of hydroponically grown plants fed with isosmotic nutrient solutions that have different proportions of macroelements. The result revealed a high biochemical plasticity of lettuce, significantly affected by the genotype, the nutrient solution, and their interaction. Our work also provided evidence and insights into the different intraspecific responses to multifactorial variation of macrocations, with two varieties having distinct strategies to metabolically respond to nutrient variation. Overall, plant adaptive mechanisms increased the phytochemical diversity between the varieties both among and within the main classes of plant secondary metabolites. Finally, our work also implies that the interaction of a pre-existing phytochemical diversity with the management of multiple mineral elements can offer added health-related benefits to the edible product specific to the variety

    A Microbial-Based Biostimulant Enhances Sweet Pepper Performance by Metabolic Reprogramming of Phytohormone Profile and Secondary Metabolism

    Get PDF
    Microbial-based biostimulants can improve crop productivity by modulating cell metabolic pathways including hormonal balance. However, little is known about the microbial-mediated molecular changes causing yield increase. The present study elucidates the metabolomic modulation occurring in pepper (Capsicum annuum L.) leaves at the vegetative and reproductive phenological stages, in response to microbial-based biostimulants. The arbuscular mycorrhizal fungi Rhizoglomus irregularis and Funneliformis mosseae, as well as Trichoderma koningii, were used in this work. The application of endophytic fungi significantly increased total fruit yield by 23.7% compared to that of untreated plants. Multivariate statistics indicated that the biostimulant treatment substantially altered the shape of the metabolic profile of pepper. Compared to the untreated control, the plants treated with microbial biostimulants presented with modified gibberellin, auxin, and cytokinin patterns. The biostimulant treatment also induced secondary metabolism and caused carotenoids, saponins, and phenolic compounds to accumulate in the plants. Differential metabolomic signatures indicated diverse and concerted biochemical responses in the plants following the colonization of their roots by beneficial microorganisms. The above findings demonstrated a clear link between microbial-mediated yield increase and a strong up-regulation of hormonal and secondary metabolic pathways associated with growth stimulation and crop defense to environmental stresses

    Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems

    Get PDF
    Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems

    Nutraceutical Profiles of Two Hydroponically Grown Sweet Basil Cultivars as Affected by the Composition of the Nutrient Solution and the Inoculation With Azospirillum brasilense

    Get PDF
    Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO42\u2013 or NO3\u2013, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation

    A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability

    Get PDF
    Plant-derived protein hydrolysates (PHs) are an important category of biostimulants able to increase plant growth and crop yield especially under environmental stress conditions. PHs can be applied as foliar spray or soil drench. Foliar spray is generally applied to achieve a relatively short-term response, whereas soil drench is used when a long-term effect is desired. The aim of the study was to elucidate the biostimulant action of PH application method (foliar spray or substrate drench) on morpho-physiological traits and metabolic profile of tomato grown under limited water availability. An untreated control was also included. A high-throughput image-based phenotyping (HTP) approach was used to non-destructively monitor the crop response under limited water availability (40% of container capacity) in a controlled environment. Moreover, metabolic profile of leaves was determined at the end of the trial. Dry biomass of shoots at the end of the trial was significantly correlated with number of green pixels (R2 = 0.90) and projected shoot area, respectively. Both drench and foliar treatments had a positive impact on the digital biomass compared to control while the photosynthetic performance of the plants was slightly influenced by treatments. Overall drench application under limited water availability more positively influenced biomass accumulation and metabolic profile than foliar application. Significantly higher transpiration use efficiency was observed with PH-drench applications indicating better stomatal conductance. The mass-spectrometry based metabolomic analysis allowed the identification of distinct biochemical signatures in PH-treated plants. Metabolomic changes involved a wide and organized range of biochemical processes that included, among others, phytohormones (notably a decrease in cytokinins and an accumulation of salicylates) and lipids (including membrane lipids, sterols, and terpenes). From a general perspective, treated tomato plants exhibited an improved tolerance to reactive oxygen species (ROS)-mediated oxidative imbalance. Such capability to cope with oxidative stress might have resulted from a coordinated action of signaling compounds (salicylic acid and hydroxycinnamic amides), radical scavengers such as carotenoids and prenyl quinones, as well as a reduced biosynthesis of tetrapyrrole coproporphyrins
    corecore