27,137 research outputs found
An updated catalog of OH-maser-emitting planetary nebulae
Aims. We studied the characteristics of planetary nebulae (PNe) that show
both OH maser and radio continuum emission (hereafter OHPNe). These have been
proposed to be very young PNe, and therefore, they could be key objects for
understanding the formation and evolution of PNe. Methods. We consulted the
literature searching for interferometric observations of radio continuum and OH
masers toward evolved stars, including the information from several surveys. We
also processed radio continuum and OH maser observations toward PNe in the Very
Large Array data archive. The high positional accuracy provided by
interferometric observations allow us to confirm or reject the association
between OH maser and radio continuum emission. Results. We found a total of six
PNe that present both OH maser and radio continuum emissions, as confirmed with
radio interferometric observations. These are bona fide OHPNe. The confirmed
OHPNe present a bipolar morphology in resolved images of their ionized emission
at different wavelengths, suggesting that the OH maser emission in PNe is
related to nonspherical mass-loss phenomena. The OH maser spectra in PNe
present a clear asymmetry, tending to show blueshifted emission with respect to
the systemic velocity. Their infrared colors suggest that most of these objects
are very young PNe. OHPNe do not form a homogeneous group, and seem to
represent a variety of different evolutionary stages. We suggest that OH masers
pumped in the AGB phase may disappear during the post-AGB phase, but reappear
once the source becomes a PN and its radio continuum emission is amplified by
the OH molecules. Therefore, OH maser emission could last significantly longer
than the previously assumed 1000 yr after the end of the AGB phase. This maser
lifetime may be longer in PNe with more massive central stars, which ionize a
larger amount of gas in the envelope.Comment: 16 pages, 5 figures, 4 tables. Accepted for publication by Astronomy
& Astrophysic
On-off intermittency and amplitude-phase synchronization in Keplerian shear flows
We study the development of coherent structures in local simulations of the
magnetorotational instability in accretion discs in regimes of on-off
intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102
(2010)], we have shown that the laminar and bursty states due to the on-off
spatiotemporal intermittency in a one-dimensional model of nonlinear waves
correspond, respectively, to nonattracting coherent structures with higher and
lower degrees of amplitude-phase synchronization. In this paper we extend these
results to a three-dimensional model of magnetized Keplerian shear flows.
Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we
investigate two different intermittent regimes by varying the plasma beta
parameter. The first regime is characterized by turbulent patterns interrupted
by the recurrent emergence of a large-scale coherent structure known as
two-channel flow, where the state of the system can be described by a single
Fourier mode. The second regime is dominated by the turbulence with sporadic
emergence of coherent structures with shapes that are reminiscent of a
perturbed channel flow. By computing the Fourier power and phase spectral
entropies in three-dimensions, we show that the large-scale coherent structures
are characterized by a high degree of amplitude-phase synchronization.Comment: 17 pages, 10 figure
Impact of acute and long-term exposure to oxybenzone on the Caenorhabditis elegans life history
UV-filters are the active ingredients providing weatherproofing to industrial products and UV-light protection in personal care products such as sun-tan lotions. Sun-tan lotions products are commonly recommended to protect the skin from the sun’s damaging rays however their increasing prevalence in drinking water and aquatic
environments has raised concern regarding their effect on both human and environmental health. The common UV-filter Oxybenzone (BP-3) has been highlighted as a compound of particular concern due to its high prevalence, its known toxicity in aquatic species and its ability to accumulate in the active sludge of waste-water treatment plants. Here, we investigate for the first time the effect of BP-3 on the
fecundity and growth of the terrestrial nematode Caenorhabditis elegans and develop a novel method of modelling the UV-filter pollution associated with the use of UV-filter contaminated active sludge as fertilizer. Our results show that four hour BP-3 exposure did not affect reproductive health at environmentally relevant concentrations (experimental concentrations of 50, 100, 250 and 500 μg/L) however, two of three replicates demonstrated a significant effect of BP-3 (experimental concentrations of
500, 1000, 1500, 2000 μg/L) on total C. elegans fecundity. One replicate also demonstrated that nematodes acutely exposed to 500 μg/L of BP-3 were significantly larger than those measured before the experiment, potentially suggesting an effect on the nematodes ability to control osmolarity. It was found that BP-3 did not influence the growth of C.elegans, which contradicts previous research. This highlights the need for further investigation into BP-3 toxicity. Finally, it was found that in one of the replicates, the nematodes exposed to E. coli contaminated with 1500 μg/L BP-3 were significantly smaller than those exposed to E. coli contaminated with 1000 μg/L BP-3,suggesting the need for further investigation into the potential environmental risks associated with UV-filter pollution originating from active sludge. In conclusion the
research conducted in this project provides a novel insight into BP-3 toxicity and the development of a universal toxicity model, which could provide reasoning for the
implementation of restrictions on dangerous UV-filters both in localised areas but also internationally
Emergent SU(N) symmetry in disordered SO(N) spin chains
Strongly disordered spin chains invariant under the SO(N) group are shown to
display random-singlet phases with emergent SU(N) symmetry without fine tuning.
The phases with emergent SU(N) symmetry are of two kinds: one has a ground
state formed of randomly distributed singlets of strongly bound pairs of SO(N)
spins (a `mesonic' phase), while the other has a ground state composed of
singlets made out of strongly bound integer multiples of N SO(N) spins (a
`baryonic' phase). The established mechanism is general and we put forward the
cases of and as prime candidates for experimental
realizations in material compounds and cold-atoms systems. We display universal
temperature scaling and critical exponents for susceptibilities distinguishing
these phases and characterizing the enlarging of the microscopic symmetries at
low energies.Comment: 5 pages, 2 figures, Contribution to the Topical Issue "Recent
Advances in the Theory of Disordered Systems", edited by Ferenc Igl\'oi and
Heiko Riege
The importance of community development for health and well-being
Public health - Economic aspects
Sub-arcsecond Morphology of Planetary Nebulae
Planetary nebulae (PNe) can be roughly categorized into several broad
morphological classes. The high quality images of PNe acquired in recent years,
however, have revealed a wealth of fine structures that preclude simplistic
models for their formation. Here we present narrow-band, sub-arcsecond images
of a sample of relatively large PNe that illustrate the complexity and variety
of small-scale structures. This is especially true for bipolar PNe, for which
the images reveal multi-polar ejections and, in some cases, suggest turbulent
gas motions. Our images also reveal the presence or signs of jet-like outflows
in several objects in which this kind of component has not been previously
reported.Comment: 7 pages, 7 figures, Accepted for publication in PAS
Highly-symmetric random one-dimensional spin models
The interplay of disorder and interactions is a challenging topic of
condensed matter physics, where correlations are crucial and exotic phases
develop. In one spatial dimension, a particularly successful method to analyze
such problems is the strong-disorder renormalization group (SDRG). This method,
which is asymptotically exact in the limit of large disorder, has been
successfully employed in the study of several phases of random magnetic chains.
Here we develop an SDRG scheme capable to provide in-depth information on a
large class of strongly disordered one-dimensional magnetic chains with a
global invariance under a generic continuous group. Our methodology can be
applied to any Lie-algebra valued spin Hamiltonian, in any representation. As
examples, we focus on the physically relevant cases of SO(N) and Sp(N)
magnetism, showing the existence of different randomness-dominated phases.
These phases display emergent SU(N) symmetry at low energies and fall in two
distinct classes, with meson-like or baryon-like characteristics. Our
methodology is here explained in detail and helps to shed light on a general
mechanism for symmetry emergence in disordered systems.Comment: 26 pages, 12 figure
- …