1,458 research outputs found

    Subcritical instabilities in a convective fluid layer under a quasi-1D heating

    Full text link
    The study and characterization of the diversity of spatiotemporal patterns generated when a rectangular layer of fluid is locally heated beneath its free surface is presented. We focus on the instability of a stationary cellular pattern of wave number ksk_s which undergoes a globally subcritical transition to traveling waves by parity-breaking symmetry. The experimental results show how the emerging traveling mode (2/3ks2/3k_{s}) switches on a resonant triad (ksk_s, ks/2k_s/2, 2ks/32k_{s}/3) within the cellular pattern yielding a ``mixed'' pattern. The nature of this transition is described quantitatively in terms of the evolution of the fundamental modes by complex demodulation techniques. The B\' enard-Marangoni convection accounts for the different dynamics depending on the depth of the fluid layer and on the vertical temperature difference. The existence of a hysteresis cycle has been evaluated quantitatively. When the bifurcation to traveling waves is measured in the vicinity of the codimension-2 bifurcation point, we measure a decrease of the subcritical interval in which the traveling mode becomes unstable. From the traveling wave state the system under goes a {\it new} global secondary bifurcation to an alternating pattern which doubles the wavelength (ks/2k_{s}/2) of the primary cellular pattern, this result compares well with theoretical predictions [P. Coullet and G. Ioss, {\em Phys. Rev. Lett.} {\bf 64}, 8 66 (1990)]. In this cascade of bifurcations towards a defect dynamics, bistability due to the subcritical behavior of our system is the reason for the coexistence of two different modulated patterns connected by a front. These fronts are stationary for a finite interval of the control parameters.Comment: 13 pages, 12 figure

    MSW mediated neutrino decay and the solar neutrino problem

    Get PDF
    We investigate the solar neutrino problem assuming simultaneous presence of MSW transitions in the sun and neutrino decay on the way from sun to earth. We do a global χ2\chi^2-analysis of the data on total rates in Cl, Ga and Superkamiokande (SK) experiments and the SK day-night spectrum data and determine the changes in the allowed region in the \dm - \tan^2\theta plane in presence of decay. We also discuss the implications for unstable neutrinos in the SNO experiment.Comment: Final version to appear in Phys. Rev.

    Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment

    Full text link
    In this paper, we review theoretical and experimental research on rare region effects at quantum phase transitions in disordered itinerant electron systems. After summarizing a few basic concepts about phase transitions in the presence of quenched randomness, we introduce the idea of rare regions and discuss their importance. We then analyze in detail the different phenomena that can arise at magnetic quantum phase transitions in disordered metals, including quantum Griffiths singularities, smeared phase transitions, and cluster-glass formation. For each scenario, we discuss the resulting phase diagram and summarize the behavior of various observables. We then review several recent experiments that provide examples of these rare region phenomena. We conclude by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative Ising chain fixed, references added, v3: final version as publishe

    A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. I. General formalism and application to open-shell states

    Get PDF
    The solution of the time-dependent Schrodinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600397

    Analog of Rabi oscillations in resonant electron-ion systems

    Get PDF
    Quantum coherence between electron and ion dynamics, observed in organic semiconductors by means of ultrafast spectroscopy, is the object of recent theoretical and computational studies. To simulate this kind of quantum coherent dynamics, we have introduced in a previous article [L. Stella, M. Meister, A. J. Fisher, and A. P. Horsfield, J. Chem. Phys. 127, 214104 (2007)] an improved computational scheme based on Correlated Electron-Ion Dynamics (CEID). In this article, we provide a generalization of that scheme to model several ionic degrees of freedom and many-body electronic states. To illustrate the capability of this extended CEID, we study a model system which displays the electron-ion analog of the Rabi oscillations. Finally, we discuss convergence and scaling properties of the extended CEID along with its applicability to more realistic problems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3589165

    Non-Fermi liquid behavior and Griffiths phase in {\it f}-electron compounds

    Full text link
    We study the interplay among disorder, RKKY and Kondo interactions in {\it f}-electron alloys. We argue that the non-Fermi liquid behavior observed in these systems is due to the existence of a Griffiths phase close to a quantum critical point. The existence of this phase provides a unified picture of a large class of materials. We also propose new experiments that can test these ideas.Comment: 4 pages, 1 Figure. NEW version of the original manuscript. A single framework for NFL behavior in different kinds of alloys is presented. Final version finally allowed to appear on the glorious Physical Review Letter

    Rare region effects at classical, quantum, and non-equilibrium phase transitions

    Full text link
    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions, and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum, and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process.Comment: Topical review, 68 pages, 14 figures, final version as publishe

    Odd Frequency Pairing in the Kondo Lattice

    Full text link
    We discuss the possibility that heavy fermion superconductors involve odd-frequency pairing of the kind first considered by Berezinskii. Using a toy model for odd frequency triplet pairing in the Kondo lattice we are able to examine key properties of this new type of paired state. To make progress treating the strong nf=1n_f=1 constraint in the Kondo lattice model we use the technical trick of a Majorana representation of the local moments, which permits variational treatments of the model without a Gutzwiller approximation. The simplest mean field theory involves the development of bound states between the local moments and conduction electrons, characterized by a spinor order parameter. We show that this state is a stable realization of odd frequency triplet superconductivity with surfaces of gapless excitations whose spin and charge coherence factors vanish linearly in the quasiparticle energy. A T3T^3 NMR relaxation rate coexists with a linear specific heat. We discuss possible extensions of our toy model to describe heavy fermion superconductivity.Comment: 67 page

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in ϵ=1γ\epsilon=1-\gamma, where γ\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe
    corecore