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The solution of the time-dependent Schrödinger equation for systems of interacting electrons is gen-
erally a prohibitive task, for which approximate methods are necessary. Popular approaches, such
as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional
theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable
of fully accounting for the excited character of the electronic states involved in many physical pro-
cesses of interest; TDDFT, although exact in principle, is limited by the currently available exchange-
correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigu-
rational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the
excited states and can be systematically improved. However, the computational cost becomes pro-
hibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is
only practical for few-electron systems. In this work, we propose an alternative approach which effec-
tively establishes a compromise between efficiency and accuracy, by retaining the smallest possible
number of configurations that catches the essential features of the electronic wavefunction. Based on
a time-dependent variational principle, we derive the MCTDHF working equation for a multicon-
figurational expansion with fixed coefficients and specialise to the case of general open-shell states,
which are relevant for many physical processes of interest. © 2011 American Institute of Physics.
[doi:10.1063/1.3600397]

I. INTRODUCTION

Over the last couple of decades, substantial progress
in the field of laser technology has provided powerful tools
to probe the dynamics of excited electronic states in atoms
and molecules. Indeed, new radiation sources combining
high intensities with ultrashort pulse durations have been
developed, allowing for the time-resolved investigation of
dynamical processes which occur on subpicosecond time
scales. Prominent examples include studies of photoexcita-
tion dynamics1–4 and ultrafast charge transfer processes5–7 in
complex molecular systems.

The theoretical interpretation of these experiments offers
significant challenges, since it requires better approximations
for solving the time-dependent Schrödinger equation for
systems of many interacting electrons, taking into account the
excited character of the electronic states without hampering
computational performance. One of the most widely used
methods is time-dependent density functional theory8, 9

(TDDFT), in which the electronic density is propagated in
time. The popularity of TDDFT stems from the success
of its time-independent counterpart in electronic structure
calculations, as well as the possibility of including electron

a)Electronic mail: r.miranda@ucl.ac.uk.

correlation effects in a numerically tractable way. Although,
in principle, TDDFT could yield the exact solution of the
time-dependent Schrödinger equation, in practice its results
need to be interpreted carefully, since it is nontrivial to build
an exchange-correlation functional which can accurately
describe localised excited states, e.g., polaron-excitons.10

Further, since TDDFT only deals with the electronic density
and not with the many-body wavefunction, it can be difficult
to define several important physical observables in a rigorous
way: one important exception is the single-particle excitation
spectrum. The choice of a single Slater determinant repre-
sentation for the charge density also makes it difficult to see
how to construct a calculation starting from (for example) an
excited singlet state that requires at least two determinants in
a wavefunction calculation.

An alternative wavefunction-based approach, also with
low computational cost, is the time-dependent Hartree-
Fock11–13 (TDHF) approximation. This method consists in
restricting the electronic wavefunction to the form of a single
Slater determinant, built using a number of single-particle
orbitals, which are optimised according to a time-dependent
variational principle. The single-configurational nature of
TDHF is clearly insufficient to accurately describe the
excited states involved in most physical processes of inter-
est. This is especially true for the commonly used restricted

0021-9606/2011/134(24)/244101/10/$30.00 © 2011 American Institute of Physics134, 244101-1
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version of TDHF, where the spatial parts of the single-particle
orbitals are identical for both spin states. An improved de-
scription may be achieved by relaxing this constraint, but
the resulting unrestricted formalism has only been employed
with limited success.14

In recent years, considerable effort has been devoted to
generalising the TDHF method, by expanding the electronic
wavefunction into several Slater determinants,15–19 rather
than a single one. This multiconfigurational time-dependent
Hartree-Fock (MCTDHF) approach exploits the idea of vari-
ationally optimising the expansion coefficients, as well as the
single-particle orbitals used to build each configuration. This
allows for a much more effective sampling of the many-body
Hilbert space in comparison with expansions which use time-
independent configurations. The MCTDHF method systemat-
ically improves the description of electron correlation effects
towards the exact solution of the time-dependent Schrödinger
equation, as more and more electrons are added to an increas-
ingly large active space.

In its current formulation, MCTDHF is only practical for
few-electron systems, since the wavefunction expansion quite
rapidly becomes prohibitively large as the number of degrees
of freedom increases (the computational time has an exponen-
tial dependence on the number of electrons). In this work, we
take a complementary approach which aims at establishing a
compromise between efficiency and accuracy, thus allowing
for the study of much larger systems. The idea is to retain
the smallest possible number of configurations that catches
the essential features of the electronic wavefunction, notably
its spin symmetry. This is important, as it allows us to distin-
guish between singlet and triplet excited states, which exhibit
quite different properties. The single-particle orbitals used to
construct the wavefunction expansion are then optimised ac-
cording to a time-dependent variational principle. However, in
contrast to the work of Refs. 15–19, the expansion coefficients
are held fixed. In this way, we are implicitly assuming a min-
imal description of the electronic wavefunction, such that, for
symmetry reasons, the expansion coefficients can be treated
as time-independent. We are particularly interested in special-
ising to the case of general open-shell states,20–22 which are
relevant for many physical processes of interest, such as the
dynamics of photoexcitations in molecules.

The remainder of this paper is organised as follows. In
Sec. II, we derive the MCTDHF working equation for a mul-
ticonfigurational expansion with fixed coefficients, using the
Dirac-Frenkel formulation of the time-dependent variational
principle.12, 23, 24 In Sec. III, the method is applied to the
case of general open-shell states. The illustrative examples
of closed-shell and open-shell singlet states are considered
in detail. Finally, a comparison with related work is given in
Sec. IV, and Sec. V is devoted to concluding remarks.

II. GENERAL FORMALISM

A. MCTDHF working equation

Consider a system of N interacting electrons, described
by the Hamiltonian25

Ĥ =
∑
i, j

Ti j ĉ
†
i ĉ j + 1

2

∑
i, j,k,l

Vi jkl ĉ
†
i ĉ†j ĉl ĉk, (1)

where ĉ†i (ĉi ) creates (annihilates) an electron in the molecular
spin-orbital φi , and

Ti j =
∫

φ∗
i (ξ )T̂ (ξ )φ j (ξ ) dξ ,

Vi jkl =
∫

φ∗
i (ξ )φ∗

j (ξ
′)V̂ (ξ , ξ ′)φk(ξ )φl(ξ

′) dξdξ ′.
(2)

The operators T̂ and V̂ gather all the one-electron and
electron-electron interactions, respectively, and ξ = {r, σ }
denotes collectively the orbital and spin coordinates of an
electron.

The task of finding an approximate solution to the time-
dependent Schrödinger equation,

i¯|�̇〉 = Ĥ |�〉, (3)

requires that we specify an ansatz for the electronic wavefunc-
tion. We will assume that this has the form of a superposition
of Slater determinants,

|�〉 =
∑

α

Cα|φα1 · · · φαN 〉 ≡
∑

α

Cα|�α〉, (4)

with fixed expansion coefficients, Cα . Although this multi-
configurational form is quite general, we have in mind a min-
imal description of the electronic wavefunction, which retains
the smallest possible number of Slater determinants required
to generate an eigenfunction of the spin operator. In this case,
the expansion coefficients are uniquely defined (up to an over-
all phase factor) and can be regarded as time-independent. For
instance, in a photoexcitation process, absorption of a pho-
ton creates an open-shell singlet state, which can be written
as a sum of two Slater determinants, provided that electron
correlation is not too important. The time evolution of such
a state, under a spin-independent Hamiltonian, clearly does
not introduce a phase difference between the two configura-
tions, in order to preserve the proper spin symmetry. For this
reason, in a minimal model to study the dynamics of such
an excited state, the expansion coefficients can be considered
time-independent.

Each configuration in Eq. (4), �α , is built using N molec-
ular spin-orbitals, indexed by αi , from the complete set {φ j }.
Although some orbitals may not be included in the expansion,
the existence of such a complete set can always be assumed.25

Our goal is then to derive a set of optimal equations of motion
for the (single-particle) molecular spin-orbitals. Stated in an
equivalent way, we wish to find a single-particle, Hermitian
operator, R̂, that provides the best self-consistent approxima-
tion to the true evolution of the many-body wavefunction, �:

i¯|�̇〉 ≈ R̂|�〉 =
∑
i, j

Ri j ĉ
†
i ĉ j |�〉, (5)

where

Ri j =
∫

φ∗
i (ξ )R̂(ξ )φ j (ξ ) dξ = i¯

∫
φ∗

i (ξ )φ̇ j (ξ ) dξ . (6)
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Note that R̂|�〉 is equivalent to a sum over the time derivatives
of the single-particle orbitals. It is clear that this can only pro-
vide an approximation to the true evolution of the many-body
wavefunction, since R̂ is a single-particle operator, unlike the
Hamiltonian [Eq. (1)]. This is a fundamental consequence of
keeping the coefficients fixed in the wavefunction expansion,
which is meant to be highlighted through the use of the ap-
proximation sign in Eq. (5).

The evolution operator R̂ (and, hence, the optimal equa-
tions of motion for the molecular spin-orbitals) may be
found using the Dirac-Frenkel time-dependent variational
principle.12, 23, 24 In this formalism, one varies the action
integral23

I [�] =
∫ t2

t1

〈�|Ĥ − i¯
∂

∂t
|�〉 dt, (7)

with fixed end points. This procedure yields the variational
equation〈

δ�|
(

Ĥ − i¯
∂

∂t

)
�

〉
+

〈(
Ĥ − i¯

∂

∂t

)
�|δ�

〉
= 0, (8)

which must be satisfied for arbitrary variations, δ�, of the
approximate many-body wavefunction, �. Although Eq. (8)
is usually stated directly as the Dirac-Frenkel variational
principle,12, 24 the underlying principle is always the integral
formulation, which is necessary to justify the presence of the
time derivative acting on the bra (in the second term) by par-
tial integration.

To write the variation, let us consider the effect of a small
rotation of the orthonormal set of molecular orbitals,

|φ′
i 〉 =

∑
j

e	 j i |φ j 〉. (9)

Notice that, since the new orbitals also form an orthonormal
set, the matrix of orbital rotation (or mixing) parameters, �,
must be anti-Hermitian,

	i j = −	∗
j i . (10)

The transformed wavefunction can be written as

|� ′〉 =
∑

α

Cα

∏′

i

ĉ′†
i ĉi |�α〉, (11)

where the symbol
∏′ means that the product runs over the

subset of spin-orbitals included in �α , and ĉ′†
i creates an elec-

tron in the rotated orbital φ′
i . This operator can be expressed

in the basis of the original orbitals as25

ĉ′†
i =

∑
j

〈φ j |φ′
i 〉ĉ†j , (12)

or since we are considering small rotations,

ĉ′†
i ≈

∑
j

(δ j i + 	 j i )ĉ
†
j . (13)

Inserting Eq. (13) into Eq. (11), we obtain to first order in �,

|� ′〉 ≈
∑

α

Cα

[∏
i

′
ĉ†i ĉi |�α〉 +

∑
i

′∑
j

	 j i ĉ
†
j ĉi |�α〉

]
= |�〉 +

∑
i, j

	 j i ĉ
†
j ĉi |�〉, (14)

from which we identify

|δ�〉 =
∑
i, j

	 j i ĉ
†
j ĉi |�〉. (15)

This methodology has the obvious advantage of incorporating
the orthonormality constraints by construction. Furthermore,
it provides physical insight into the structure of the varia-
tion, thus facilitating the elimination of redundant parameters,
which is of key importance.

Combining Eqs. (5), (8), (10), and (15), the variational
equation can be recast in the form∑

i, j

	i j 〈�|[Ĥ − R̂, ĉ†i ĉ j ]|�〉 = 0, (16)

or after inserting the Hamiltonian [Eq. (1)] and doing some
operator algebra,∑

i, j

	i j

{ ∑
k

[
(Tki − Rki )ρ

(1)
k j − (Tjk − R jk)ρ(1)

ik

]
+

∑
k,l,m

[
Vklimρ

(2)
klm j − Vjkmlρ

(2)
iklm

]} = 0,

(17)

where

ρ
(1)
i j = 〈�|ĉ†i ĉ j |�〉,

ρ
(2)
i jkl = 〈�|ĉ†i ĉ†j ĉk ĉl |�〉

(18)

denote the one- and two-body reduced density matrices,25, 26

respectively. Equation (17) constitutes the basic MCTDHF
working equation. To carry on the derivation of the equations
of motion for the single-particle orbitals, it is necessary to fur-
ther specify the form of the one- and two-body reduced den-
sity matrices. In Sec. III, we will do so for general open-shell
states, with the special cases of closed-shell and open-shell
singlet states being treated explicitly.

B. Conservation properties

In order to obtain proper dynamics, it is crucial that the
equations of motion conserve energy (for time-independent
Hamiltonians) and preserve the orthonormality of the molec-
ular spin-orbitals. To establish energy conservation, we can
resort to the Dirac-Frenkel variational principle directly. In
general, we can write24

|δ�〉 = |�̇〉δt. (19)

Substitution into Eq. (8) yields

〈�̇|Ĥ |�〉 + 〈�|Ĥ |�̇〉 = 0, (20)

which shows that energy is conserved throughout the dynam-
ics if the Hamiltonian is time-independent. The conservation
of orthonormality,

d

dt
〈φi |φ j 〉 = 〈φ̇i |φ j 〉 + 〈φi |φ̇ j 〉 = 0, (21)

follows trivially from the requirement that the effective
single-particle operator R̂ is Hermitian, on view of Eq. (6).
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III. APPLICATIONS

A. Closed-shell singlet state

We now specialise the variational approach of Sec. II A to
the case of a closed-shell singlet state and a spin-independent
Hamiltonian. The wavefunction takes the form of a single
Slater determinant,

|�〉 = |φ1φ̄1 φ2φ̄2 · · · φnφ̄n〉. (22)

In the above expression, φi (φ̄i ) denotes a spin-up (spin-down)
state and n = N/2. Spin symmetry suggests the use of a
restricted formalism, for which the spin-up and spin-down
states possess the same orbital part. It also suggests that we
set

	iσi , jσ j = 	̃i jδσi σ j , (23)

thus considering only the mixing between the spatial parts
of the molecular spin-orbitals. The relevant operators are all
spin-independent, with matrix elements satisfying

Tiσi , jσ j = T̃i jδσi σ j ,

Viσi jσ j ,kσk lσl = Ṽi jklδσi σk δσ j σl ,

Riσi , jσ j = R̃i jδσi σ j ,

(24)

where

T̃i j =
∫

φ∗
i (r)T̂ (r)φ j (r) dr,

Ṽi jkl =
∫

φ∗
i (r)φ∗

j (r ′)V̂ (r, r ′)φk(r)φl(r ′) drdr ′,

R̃i j =
∫

φ∗
i (r)R̂(r)φ j (r) dr = i¯

∫
φ∗

i (r)φ̇ j (r) dr,

(25)

and φi now denotes the spatial part of the molecular spin-
orbitals alone.

Using the standard rules for the behaviour of creation and
annihilation operators,25 the elements of the one- and two-
body reduced density matrices can be easily computed. The
result is

ρ
(1)
iσi , jσ j

= δi jδσi σ j ,

ρ
(2)
iσi jσ j ,kσk lσl

= δilδ jkδσi σl δσ j σk − δikδ jlδσi σk δσ j σl ,
(26)

when all the indices refer to occupied orbitals, and zero oth-
erwise. Inserting Eq. (26) into Eq. (17), we can write the vari-
ational condition as∑

i,σi

∑
j,σ j

′	iσi , jσ j

[
(Tjσ j ,iσi − R jσ j ,iσi )

+
∑
k,σk

′(Vjσ j kσk ,iσi kσk − Vjσ j kσk ,kσk iσi )

]

−
∑
i,σi

′ ∑
j,σ j

	iσi , jσ j

[
(Tjσ j ,iσi − R jσ j ,iσi )

+
∑
k,σk

′(Vjσ j kσk ,iσi kσk − Vjσ j kσk ,kσk iσi )

]
= 0, (27)

where the symbol
∑′ means that the sum extends only over

occupied molecular orbitals. Performing the summations over
spin, with the help of Eqs. (23) and (24), yields∑

i

∑
j

′ 2	̃i j

[
(T̃ ji − R̃ ji ) +

∑
k

′(2Ṽ jkik − Ṽ jkki )

]

−
∑

i

′∑
j

2	̃i j

[
(T̃ ji − R̃ ji ) +

∑
k

′(2Ṽ jkik − Ṽ jkki )

]
= 0.

(28)

Let us now introduce the (closed-shell) Fock
operator,12, 24

F̂ = T̂ +
∑

k

′(2 Ĵk − K̂k), (29)

where Ĵk and K̂k are Coulomb and exchange operators,12, 24

defined by

Ĵk(r)φi (r) =
[ ∫

φ∗
k (r ′)V̂ (r, r ′)φk(r ′) dr ′

]
φi (r),

K̂k(r)φi (r) =
[ ∫

φ∗
k (r ′)V̂ (r, r ′)φi (r ′) dr ′

]
φk(r).

(30)

Clearly, we have

F̃ji = 〈φ j |F̂ |φi 〉 = T̃ ji +
∑

k

′(2Ṽ jkik − Ṽ jkki ), (31)

and thus the variational equation can be rewritten as∑
i

∑
j

′2	̃i j (F̃ji − R̃ ji ) −
∑

i

′∑
j

2	̃i j (F̃ji − R̃ ji ) = 0.

(32)

Introducing the occupation numbers,

ni =
{

2, if φi is doubly occupied

0, otherwise,
(33)

it is possible to gather the two terms in Eq. (32),∑
i, j

	̃i j (n j − ni )〈φ j |F̂ − R̂|φi 〉 = 0. (34)

Hence, the choice R̂ = F̂ satisfies the Dirac-Frenkel varia-
tional principle, and the optimal equations of motion for the
spatial part of the single-particle orbitals read

i¯|φ̇i 〉 = F̂ |φi 〉, (35)

as expected (this is the usual TDHF result11–13). Notice that
there is a certain degree of arbitrariness in this choice of the
effective single-particle operator R̂, since Eq. (34) is auto-
matically satisfied when ni = n j . Thus, the relevant matrix
elements are those connecting the occupied and virtual sub-
spaces, for which the choice of R̂ is unique.

B. Open-shell singlet state

Let us now consider the case of an open-shell sin-
glet state and a spin-independent Hamiltonian. The spin
symmetry arguments of the single-configurational case can
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still be invoked, and thus Eqs. (23)–(25) remain valid. In this
case, the wavefunction is the sum of two Slater determinants,

|�〉 = 1√
2
|φ1φ̄1 · · · φn−1φ̄n−1 φv φ̄c〉

+ 1√
2
|φ1φ̄1 · · · φn−1φ̄n−1 φcφ̄v〉

≡ 1√
2

(|�1〉 + |�2〉), (36)

corresponding to a singlet arrangement of a set of n − 1 dou-
bly occupied orbitals and two singly occupied orbitals, la-
belled “v” and “c” (motivated by the physical picture of an
excitation from the valence band to the conduction band in
periodic systems, e.g., conjugated polymers). As before, the
elements of the one-body reduced density matrix are trivial,

ρ
(1)
iσi , jσ j

= ni

2
δi jδσi σ j , (37)

with the populations

ni =

⎧⎪⎨⎪⎩
2, if φi is doubly occupied

1, if φi is singly occupied

0, otherwise.

(38)

However, the two-body reduced density matrix possesses a
more involved structure, which we will describe briefly. When
all the indices refer to occupied orbitals, its elements can be
written as the sum of two terms (we recall that they are zero
otherwise),

ρ
(2)
iσi jσ j ,kσk lσl

= 1

2
(γiσi jσ j ,kσk lσl + ζiσi jσ j ,kσk lσl ). (39)

The first one, given by

γiσi jσ j ,kσk lσl = (δilδ jkδσi σl δσ j σk − δikδ jlδσi σk δσ j σl )

× [(1 − δivδσi ↓ − δ jvδσ j ↓)

× (1 − δicδσi ↑ − δ jcδσ j ↑)

+ (1 − δivδσi ↑ − δ jvδσ j ↑)

× (1 − δicδσi ↓ − δ jcδσ j ↓)], (40)

arises from contributions, such as 〈�1|ĉ†iσi
ĉ†jσ j

ĉkσk ĉlσl |�1〉,
which are only nonzero when we annihilate and create the
same pair of orbitals. Since each configuration is “miss-
ing” two states (φ̄v , φc are not included in �1, and φv , φ̄c

are not included in �2), some combinations of indices re-
ferring to occupied orbitals only give a partial contribution
to the total matrix element, via 〈�1|ĉ†iσi

ĉ†jσ j
ĉkσk ĉlσl |�1〉 or

〈�2|ĉ†iσi
ĉ†jσ j

ĉkσk ĉlσl |�2〉 (but not both). In Eq. (40), this is ac-
counted for by the term in square brackets. The second con-
tribution is given by
ζiσi jσ j ,kσk lσl = δivδ jcδσi ↑δσ j ↓(δkvδlcδσk↓δσl↑ − δkcδlvδσk↑δσl↓)

+ δicδ jvδσi ↓δσ j ↑(δkcδlvδσk↑δσl↓− δkvδlcδσk↓δσl↑)

+ δicδ jvδσi ↑δσ j ↓(δkcδlvδσk↓δσl↑− δkvδlcδσk↑δσl↓)

+ δivδ jcδσi ↓δσ j ↑(δkvδlcδσk↑δσl↓− δkcδlvδσk↓δσl↑),
(41)

and arises from the cross terms 〈�1|ĉ†iσi
ĉ†jσ j

ĉkσk ĉlσl |�2〉 and

〈�2|ĉ†iσi
ĉ†jσ j

ĉkσk ĉlσl |�1〉. Since the configurations included in
the wavefunction differ in two orbitals, namely the singly oc-
cupied ones, these terms are only nonzero when we annihi-
late the singly occupied states that appear in one configu-
ration and create the respective states included in the other.
Equation (41) expresses all the allowed ways in which we can
accomplish this.

With these results, Eq. (17) reads

∑
i, j,σi ,σ j

	iσi , jσ j

[
n j

2
(Tjσ j ,iσi − R jσ j ,iσi ) − ni

2
(Tjσ j ,iσi − R jσ j ,iσi )

]

+
∑
i,σi

∑
j,σ j

′′′	iσi , jσ j

[∑
k,σk

nk

2
(Vjσ j kσk ,iσi kσk − Vjσ j kσk ,kσk iσi )

]

−
∑
i,σi

′′′∑
j,σ j

	iσi , jσ j

[∑
k,σk

nk

2
(Vjσ j kσk ,iσi kσk − Vjσ j kσk ,kσk iσi )

]

− 1

2

∑
i,σi

∑
j,σ j

′	iσi , jσ j

[ ∑
k,σk

′′′(Vjσ j kσk ,iσi kσk − Vjσ j kσk ,kσk iσi )

]

+ 1

2

∑
i,σi

′ ∑
j,σ j

	iσi , jσ j

[ ∑
k,σk

′′′(Vjσ j kσk ,iσi kσk − Vjσ j kσk ,kσk iσi )

]

+ 1

2

∑
i,σi

[	iσi ,v↑(Vv↑c↓,iσi c↓ − Vc↓v↑,iσi c↓ + Vc↑v↓,iσi c↓ − Vv↓c↑,iσi c↓)

+	iσi ,v↓(Vv↓c↑,iσi c↑ − Vc↑v↓,iσi c↑ + Vc↓v↑,iσi c↑ − Vv↑c↓,iσi c↑)
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+	iσi ,c↑(Vc↑v↓,iσi v↓ − Vv↓c↑,iσi v↓ + Vv↑c↓,iσi v↓ − Vc↓v↑,iσi v↓)

+	iσi ,c↓(Vc↓v↑,iσi v↑ − Vv↑c↓,iσi v↑ + Vv↓c↑,iσi v↑ − Vc↑v↓,iσi v↑)]

− 1

2

∑
j,σ j

[	v↑, jσ j (Vjσ j c↓,v↑c↓ − Vjσ j c↓,c↓v↑ + Vjσ j c↓,c↑v↓ − Vjσ j c↓,v↓c↑)

+	v↓, jσ j (Vjσ j c↑,v↓c↑ − Vjσ j c↑,c↑v↓ + Vjσ j c↑,c↓v↑ − Vjσ j c↑,v↑c↓)

+	c↑, jσ j (Vjσ j v↓,c↑v↓ − Vjσ j v↓,v↓c↑ + Vjσ j v↓,v↑c↓ − Vjσ j v↓,c↓v↑)

+	c↓, jσ j (Vjσ j v↑,c↓v↑ − Vjσ j v↑,v↑c↓ + Vjσ j v↑,v↓c↑ − Vjσ j v↑,c↑v↓)] = 0, (42)

where the symbol
∑′′′ means that the sum runs over both doubly and singly occupied molecular orbitals (but not empty ones),

and
∑′ is used for sums which extend only over singly occupied orbitals. Using Eqs. (23) and (24) to perform the summations

over spin, yields∑
i, j

	̃i j [n j (T̃ ji − R̃ ji ) − ni (T̃ ji − R̃ ji )] +
∑

i

∑
j

′′′	̃i j

∑
k

nk(2Ṽ jkik − Ṽ jkki ) −
∑

i

′′′∑
j

	̃i j

∑
k

nk(2Ṽ jkik − Ṽ jkki )

−
∑

i

∑
j

′	̃i j

∑
k

′′′(2Ṽ jkik − Ṽ jkki ) +
∑

i

′∑
j

	̃i j

∑
k

′′′(2Ṽ jkik − Ṽ jkki ) +
∑

i

[	̃iv (Ṽvcic + Ṽvcci ) + 	̃ic(Ṽcviv + Ṽcvvi )]

−
∑

j

[	̃v j (Ṽ jcvc + Ṽ jccv ) + 	̃cj (Ṽ jvcv + Ṽ jvvc)] = 0. (43)

Explicitly separating the sums that run over all occupied states
into contributions from orbitals with double and single occu-
pancies, and collecting similar terms, we obtain

∑
i, j

	̃i j [n j (T̃ ji − R̃ ji ) − ni (T̃ ji − R̃ ji )]

+
∑

i

{ ∑
j

′′	̃i j n j

[
1

2

∑
k

nk(2Ṽ jkik − Ṽ jkki )

]

+
∑

j

′	̃i j n j

[
1

2

∑
k

′′nk(2Ṽ jkik − Ṽ jkki )

+ 1

2

∑
k

′nk(2Ṽ jkik + 2Ṽ jkki )(1 − δ jk)

]}

−
∑

j

{ ∑
i

′′	̃i j ni

[
1

2

∑
k

nk(2Ṽ jkik − Ṽ jkki )

]

+
∑

i

′	̃i j ni

[
1

2

∑
k

′′nk(2Ṽ jkik − Ṽ jkki )

+ 1

2

∑
k

′nk(2Ṽ jkik + 2Ṽ jkki )(1 − δik)

]}
= 0, (44)

where the symbol
∑′′ means that the sum extends only

over doubly occupied molecular orbitals, and we have con-
veniently introduced some occupation numbers.

It is clear from the form of Eq. (44) the emergence of
Fock-like operators which depend on the orbital occupation,
in contrast with the case of a single Slater determinant. Specif-
ically, all the doubly occupied orbitals possess the same Fock
operator, whereas each singly occupied orbital has its own.
Gathering groups of orbitals with the same Fock operator in a

shell, labelled by μ, ν, . . . , we can rewrite Eq. (44) as∑
μ,ν

∑
iμ, jν

	̃iμ jν 〈φ jν |nν F̂ν − nμ F̂μ − (nν − nμ)R̂|φiμ〉 = 0,

(45)

where iμ runs over orbitals of shell μ, nμ = 0, 1, 2 denotes
the occupation number of an orbital in shell μ, and the Fock
operator for shell μ (μ �= 0) is given by

F̂μ = T̂ + 1

2

∑
ν

∑
jν

nν(2 Ĵ jν − bμν K̂ jν ), (46)

with

b =

⎛⎜⎝ 1 1 1

1 2 −2

1 −2 2

⎞⎟⎠, (47)

where we adopted the conventional ordering,20–22 in which
μ = 1 labels the doubly occupied shell, and μ = 2, 3 refer
to the singly occupied ones. Notice that we also consider the
subspace of unoccupied orbitals as a proper shell (labelled by
μ = 0), even though its Fock operator is undefined (this is,
however, irrelevant since it is always premultiplied by zero),
and therefore this shell is not included in the definition of b
given above.

From Eq. (45), we can see that mixing orbitals that
belong to the same shell does not lead to any change in
the variational quantity, and thus the terms with μ = ν can
be safely disregarded. Equivalently, as already encountered
in the single-configurational case, there is a gauge freedom
to choose the matrix elements of R̂ within the subspaces
spanned by each shell. For simplicity, these will be set to
zero. Additionally, the contributions which arise from mix-
ing orbitals of different shells, but with the same occupation
number, in general differ from zero regardless of the choice of
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the operator R̂. Hence, the corresponding orbital rotation pa-
rameters must be set to zero in order to satisfy the variational
principle. This is consistent with neglecting two-electron pro-
cesses which change the shell structure and can only be de-
scribed using a formalism with time-dependent expansion
coefficients.

With the above considerations, the variational equation
reduces to∑

μ,ν

(nμ �=nν )

∑
iμ, jν

	̃iμ jν 〈φ jν |nν F̂ν − nμ F̂μ − (nν − nμ)R̂|φiμ〉 = 0,

(48)
which suggests that we set

R̂ =
∑
μ,ν

(nμ �=nν )

P̂ν nν F̂ν − nμ F̂μ

nν − nμ
P̂μ, (49)

where P̂μ is a projector onto the subspace spanned by shell
μ,

P̂μ =
∑

iμ

|φiμ〉〈φiμ |. (50)

Clearly, this choice satisfies the Dirac-Frenkel variational
principle. The optimal equations of motion for the spatial part
of the single-particle orbitals thus read

i¯|φ̇iμ〉 =
∑
ν,λ

(nν �=nλ)

P̂λ nλ F̂λ − nν F̂ν

nλ − nν
P̂ν |φiμ〉. (51)

C. General open-shell states

We now turn to general open-shell states, within a spin-
restricted formalism. These are characterised by the one- and
two-body reduced density matrices

ρ
(1)
iμσiμ , jνσ jν

= nμ

2
δiμ jν δσiμσ jν

,

ρ
(2)
iμσiμ jνσ jν ,kλσkλ lκσlκ

= nμnν

12
[(4aμν−bμν)(δiμlκ δ jνkλ

δσiμ σlκ
δσ jν σkλ

− δiμkλ
δ jν lκ δσiμσkλ

δσ jν σlκ
)

+ 2(aμν − bμν)(δiμkλ
δ jν lκ δσiμ σlκ

δσ jν σkλ

− δiμlκ δ jνkλ
δσiμ σkλ

δσ jν σlκ
)],

(52)

where

aμν = aνμ,

bμν = bνμ
(53)

are numerical coefficients (or state parameters) specific to the
particular form of the wavefunction,20–22 which in general is
a sum of many Slater determinants. Equation (52) leads to the
energy expression

E =
∑

μ

∑
iμ

nμT̃iμiμ+
1

4

∑
μ,ν

∑
iμ, jν

nμnν(2aμν J̃iμ jν − bμν K̃iμ jν ),

(54)

which is the more familiar way to define a general open-shell
state.20–22 Notice that the closed-shell and open-shell singlet
states of Secs. III A and III B are special cases of this broad
definition. For a closed-shell singlet state, there is only one
occupied shell, and the state parameters read a = b = 1. As
we have already seen, in the case of an open-shell singlet state,
there are three shells, b is given by Eq. (47), and

a =

⎛⎜⎝ 1 1 1

1 1 1

1 1 1

⎞⎟⎠. (55)

Many other important electronic states of atoms and
molecules fall into this category. Most notably, it includes
all possible spin-adapted states that can be generated from a
given electronic configuration.20–22

To derive the optimal equations of motion for the single-
particle orbitals, we now proceed as in Secs. III A and III B.
Inserting Eq. (52) into Eq. (17), and summing over spin, af-
ter using the Kronecker deltas to eliminate several sums, we
obtain∑

μ,ν

∑
iμ, jν

	̃iμ jν

{
nν(T̃ jν iμ − R̃ jν iμ) − nμ(T̃ jν iμ − R̃ jν iμ)

+ nν

[
1

2

∑
λ

∑
kλ

nλ(2aνλṼ jνkλiμkλ
− bνλṼ jνkλkλiμ)

]

− nμ

[
1

2

∑
λ

∑
kλ

nλ(2aμλṼ jνkλiμkλ
− bμλṼ jνkλkλiμ)

]}
= 0,

(56)

i.e.,∑
μ,ν

∑
iμ, jν

	̃iμ jν 〈φ jν |nν F̂ν − nμ F̂μ − (nν − nμ)R̂|φiμ〉 = 0,

(57)
where the Fock operator for shell μ (μ �= 0) takes the gener-
alised form

F̂μ = T̂ + 1

2

∑
ν

∑
jν

nν(2aμν Ĵ jν − bμν K̂ jν ). (58)

As before, in order to satisfy the Dirac-Frenkel variational
principle it is necessary to zero the mixing parameters be-
tween orbitals of different shells, but with the same occupa-
tion number. Also, the terms with μ = ν may be ignored, as
they do not change the variational quantity (again, we will
use this gauge freedom to set the matrix elements of R̂ within
each shell subspace to zero). We are, thus, lead to the choice

R̂ =
∑
μ,ν

(nμ �=nν )

P̂ν nν F̂ν − nμ F̂μ

nν − nμ
P̂μ, (59)

and the optimal equations of motion for the spatial part of
the single-particle orbitals have the form of Eq. (51), with the
Fock operators given by Eq. (58).

We conclude this section with a discussion of the cost
of the numerical implementation of the proposed scheme.
In all the applications we envisage, the number of occupied
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shells, Nshells, will be fixed by the spin symmetry, indepen-
dent of system size, and in addition will be much lower than
the size of the basis set, Nbasis. This is typically the case
when only a few configurations are included in the wavefunc-
tion expansion, e.g., for an open-shell singlet state. In such
a case, the computational bottleneck lies in the calculation
of the two-electron Coulomb and exchange terms required
to build the matrix form of the Fock operators, exactly as in
the TDHF method. The formal scaling is Nshells N 4

basis, since
the total number of two-electron integrals increases as N 4

basis
and Nshells different Fock operators must be constructed. If
semiempirical parameters are used instead, the numerical ef-
fort can be more favourable, of the order of N 3

basis. In the limit
of Nshells � Nbasis, the proposed method requires only a few
more matrix multiplications than the TDHF method, and thus
exhibits a comparable computational cost.

IV. COMPARISON WITH RELATED WORK

Let us now consider the case of a multiconfigurational
expansion [Eq. (4)] with time-dependent coefficients, Cα(t).
The time evolution of the approximate many-body wavefunc-
tion reads

i¯|�̇〉 = i¯
∑

α

Ċα|�α〉 + R̂|�〉, (60)

where the first term on the right-hand side arises from the
time dependence of the expansion coefficients, and the sec-
ond one emerges from the time dependence of the molecular
spin-orbitals. As we have seen in Sec. II A, this latter contri-
bution is conveniently expressed in terms of a single-particle,
Hermitian operator, R̂, which is to be found through a varia-
tional procedure. In the case under consideration, the expan-
sion coefficients need to be variationally optimised as well.

Since the expansion coefficients and the single-particle
orbitals used to build each configuration are independent vari-
ables, the many-body wavefunction can be varied separately
with respect to each of them. The variation with respect to the
expansion coefficients can be written as

|δC�〉 =
∑

α

δCα|�α〉. (61)

Application of the Dirac-Frenkel time-dependent variational
principle [Eq. (8)], with the variation given by Eq. (61), yields

i¯Ċα =
∑

β

〈�α|Ĥ − R̂|�β〉Cβ . (62)

As shown in Sec. II A, the variation with respect to the orbitals
can be expressed as

|δφ�〉 =
∑
i, j

	i j ĉ
†
i ĉ j |�〉. (63)

Combining Eqs. (8), (60), and (63), we obtain∑
i, j

	i j

[
〈�|[Ĥ − R̂, ĉ†i ĉ j ]|�〉

+ i¯
∑
α,β

(Ċ∗
αCβ + C∗

αĊβ)〈�α|ĉ†i ĉ j |�β〉
]

= 0. (64)

Notice that, if the time evolution of the expansion coefficients
only changes the wavefunction by an overall phase factor,
Eq. (64) reduces to Eq. (16). In this case, the derivation of
the optimal equations of motion for the single-particle orbitals
follows that of Sec. III C, for general open-shell states and a
spin-independent Hamiltonian. Also, in such a case, Eq. (62)
may be disregarded, since an overall phase factor is unimpor-
tant for the calculation of physical observables.

We now proceed assuming that the wavefunction expan-
sion is built from all

(M
N

)
possible configurations obtained by

distributing N electrons over M spin-orbitals. In principle,
Eq. (64) should uniquely determine the single-particle opera-
tor R̂, which in turn could be used in Eq. (62), that governs
the time evolution of the expansion coefficients. Let us ex-
amine Eq. (64) more closely to see whether this statement
holds for such a complete active space expansion. First, we
note that the terms which involve mixing unoccupied orbitals
are equal to zero, since, in this case, ĉ†i ĉ j |�α〉 = 0 for all
configurations included in the wavefunction expansion. The
contributions which arise from mixing occupied orbitals are
also equal to zero. This is most clearly seen by combining
Eqs. (62) and (64),∑

i, j

	i j [〈�|(Ĥ − R̂)(1 − P̂)ĉ†i ĉ j |�〉

−〈�|ĉ†i ĉ j (1 − P̂)(Ĥ − R̂)|�〉] = 0, (65)

with

P̂ =
∑

α

|�α〉〈�α|. (66)

When the indices i, j both refer to occupied states, ĉ†i ĉ j |�〉
generally yields a superposition of Slater determinants, all
of which are included in the expansion. However, this is
eliminated by the action of the projector onto the virtual
subspace, 1 − P̂ . Finally, we note that the matrix elements
〈�α|ĉ†i ĉ j |�β〉 are only nonzero when the indices i, j both
correspond to occupied orbitals. With these considerations,
Eq. (64) can be recast in the form∑

i

′ ∑
j

′′	∗
j i

[∑
k

′(Tjk − R jk)ρ(1)
ik +

∑
k,l,m

′Vjkmlρ
(2)
iklm

]

+
∑

i

′′ ∑
j

′	i j

[∑
k

′(Tki − Rki )ρ
(1)
k j +

∑
k,l,m

′Vklimρ
(2)
klmj

]
= 0,

(67)

where the symbol
∑′ means that the sum extends only over

occupied molecular orbitals, and
∑′′ is used for sums which

run over empty states. It is clear that Eq. (67) can only deter-
mine the matrix elements of R̂ between occupied and unoc-
cupied orbitals (and vice versa), but not within the occupied
subspace. On the other hand, these latter terms are precisely
the ones required in Eq. (62). They remain, however, unde-
termined and it is necessary to introduce further constraints.
This is in striking contrast with the case of a multiconfigura-
tional expansion with fixed coefficients, for which the neces-
sary matrix elements are determined from the Dirac-Frenkel
variational principle alone, as we have seen in Sec. III.
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This problem can be overcome by exploiting the invari-
ance of a complete active space wavefunction with respect to
unitary transformations of the single-particle orbitals, com-
pensated by reverse transformations of the coefficients.17, 19

Such property guarantees that the single-particle operator R̂
can be chosen arbitrarily within the occupied subspace, in
analogy with the (more restricted) gauge freedom observed
for general open-shell states. The simplest possible choice
reads15–19

Ri j = i¯〈φi |φ̇ j 〉 = 0, (68)

for all pairs i, j of occupied states. With this choice, Eq. (62)
reduces to

i¯Ċα =
∑

β

〈�α|Ĥ |�β〉Cβ, (69)

and the optimal equations of motion for the occupied orbitals
follow from Eq. (67). Since the real and imaginary parts of
the orbital rotation parameters can be regarded as independent
variables, the two terms on the left-hand side of Eq. (67) can
be equated to zero separately. Taking only the first term into
consideration, we find∑

k

′
[

(Tjk − R jk)ρ(1)
ik +

∑
l,m

′Vjkmlρ
(2)
iklm

]
= 0, (70)

where the indices i, j refer to occupied and unoccupied states,
respectively. Multiplying Eq. (70) by the inverse of the one-
body reduced density matrix, ρ̄(1), whose existence can al-
ways be assumed,26 yields

〈φ j |R̂|φi 〉 = 〈φ j |
(

T̂ |φi 〉 +
∑

k,l,m,n

′ρ̄(1)
ik ρ

(2)
klmn V̂lm |φn〉

)
, (71)

where

V̂lm(ξ ) =
∫

φ∗
l (ξ ′)V̂ (ξ , ξ ′)φm(ξ ′) dξ ′. (72)

Since j labels an empty state, we can introduce the projector
onto the subspace spanned by the unoccupied orbitals,

Q̂ = 1 −
∑

i

′|φi 〉〈φi | =
∑

j

′′|φ j 〉〈φ j |, (73)

and rewrite Eq. (71) in the equivalent form

〈φ j |R̂|φi 〉 = 〈φ j |Q̂
(

T̂ |φi 〉 +
∑

k,l,m,n

′ρ̄(1)
ik ρ

(2)
klmn V̂lm |φn〉

)
. (74)

Thus, the optimal equations of motion for the occupied
molecular spin-orbitals read

i¯|φ̇i 〉 = Q̂

(
T̂ |φi 〉 +

∑
k,l,m,n

′ρ̄(1)
ik ρ

(2)
klmn V̂lm |φn〉

)
. (75)

The presence of the projector in the above expression guar-
antees that the conditions specified by Eq. (68) are met at all
times throughout the propagation of the orbitals. Also, it is
easy to show that equating the second term on the left-hand
side of Eq. (67) to zero, provides no further information, as it
yields the complex conjugate of Eq. (75).

The coupled set of Eqs. (69) and (75) has been previously
derived in Refs. 15–19. It is clear that the numerical imple-
mentation of these expressions incurs a much higher cost than
for the equations of motion derived in Sec. III C for general
open-shell states. Indeed, the computational cost is exponen-
tial in the number of electrons, and thus quite rapidly becomes
prohibitive as the number of degrees of freedom increases. For
this reason, the application of this method is currently limited
to few-electron systems.15–19

In many processes of interest, the description of elec-
tron correlation effects does not require the level of accuracy
inherent to the MCTDHF method for a large wavefunction
expansion with time-dependent coefficients, and the essen-
tial physics is well described in terms of simple spin-adapted
states, for which the expansion coefficients can be regarded
as time-independent. In such cases, the method devised in
Sec. III C for general open-shell states offers an attractive
alternative. Strictly speaking, the description of several im-
portant two-electron processes, such as those governing exci-
ton transfer between molecules,27 requires a formalism with
time-dependent coefficients (although not necessarily a large
number of configurations). Within the proposed scheme, this
is only accounted for in a mean-field way. The advantage is,
of course, that it is designed to treat the dynamics of excited
electronic states at a computational cost comparable to that of
the TDHF method, thus allowing for the study of large sys-
tems of interacting electrons.

V. SUMMARY AND OUTLOOK

We have developed a multiconfigurational method for
the approximate solution of the time-dependent Schrödinger
equation for systems of interacting electrons, which effec-
tively establishes a compromise between efficiency and accu-
racy in the description of excited electronic states. Based on
a time-dependent variational principle, we have derived the
MCTDHF working equation for a multiconfigurational ex-
pansion with fixed coefficients, and specialised to the case of
general open-shell states, which are relevant for many physi-
cal processes of interest.

The proposed scheme offers an attractive alternative to
the MCTDHF method based on a complete active space ex-
pansion with time-dependent coefficients, when an accurate
description of electron correlation effects is impractical, or
not required. With a computational cost comparable to that of
the TDHF method, the study of large systems of interacting
electrons can be readily performed.

As we shall see in forthcoming articles in this series,28, 29

when combined with a classical description of the ionic de-
grees of freedom (mean-field approximation), this method
provides a powerful tool to study the effects of Coulomb in-
teractions and interchain coupling on the dynamics of pho-
toexcitations in conjugated polymers.
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