9,008 research outputs found
Seed Magnetic Fields Generated by Primordial Supernova Explosions
The origin of the magnetic field in galaxies is an open question in
astrophysics. Several mechanisms have been proposed related, in general, with
the generation of small seed fields amplified by a dynamo mechanism. In
general, these mechanisms have difficulty in satisfying both the requirements
of a sufficiently high strength for the magnetic field and the necessary large
coherent scales. We show that the formation of dense and turbulent shells of
matter, in the multiple explosion scenario of Miranda and Opher (1996, 1997)
for the formation of the large-scale structures of the Universe, can naturally
act as a seed for the generation of a magnetic field. During the collapse and
explosion of Population III objects, a temperature gradient not parallel to a
density gradient can naturally be established, producing a seed magnetic field
through the Biermann battery mechanism. We show that seed magnetic fields can be produced in this multiple explosion scenario on
scales of the order of clusters of galaxies (with coherence length ) and up to on scales of galaxies ().Comment: Accepted for publication in MNRAS, 5 pages (MN plain TeX macros v1.6
file). Also available at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS"
and then "ARTICLES"
Massive Black Hole Binary Systems in Hierarchical Scenario of Structure Formation
The hierarchical scenario of structure formation describes how objects like
galaxies and galaxy clusters are formed by mergers of small objects. In this
scenario, mergers of galaxies can lead to the formation of massive black hole
(MBH) binary systems. On the other hand, the merger of two MBH could produce a
gravitational wave signal detectable, in principle, by the Laser Interferometer
Space Antenna (LISA). In the present work, we use the Press-Schechter
formalism, and its extension, to describe the merger rate of haloes which
contain massive black holes. Here, we do not study the gravitational wave
emission of these systems. However, we present an initial study to determine
the number of systems formed via mergers that could permit, in a future
extension of this work, the calculation of the signature in gravitational waves
of these systems.Comment: to match the published version in International Journal of Modern
Physics
Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering
We explore the potential of current and next generation of coherent elastic
neutrino-nucleus scattering (CENS) experiments in probing neutrino
electromagnetic interactions. On the basis of a thorough statistical analysis,
we determine the sensitivities on each component of the Majorana neutrino
transition magnetic moment (TMM), , that
follow from low-energy neutrino-nucleus experiments. We derive the sensitivity
to neutrino TMM from the first CENS measurement by the COHERENT
experiment, at the Spallation Neutron Source. We also present results for the
next phases of COHERENT using HPGe, LAr and NaI[Tl] detectors and for reactor
neutrino experiments such as CONUS, CONNIE, MINER, TEXONO and RED100. The role
of the CP violating phases in each case is also briefly discussed. We conclude
that future CENS experiments with low-threshold capabilities can improve
current TMM limits obtained from Borexino data.Comment: 25 pages, 8 figures, 2 tables, analysis updated; conclusions
unchanged; references added; matches published versio
Collapse of Primordial Clouds
We present here studies of collapse of purely baryonic Population III objects
with masses ranging from to . A spherical Lagrangian
hydrodynamic code has been written to study the formation and evolution of the
primordial clouds, from the beginning of the recombination era () until the redshift when the collapse occurs. All the relevant processes
are included in the calculations, as well as, the expansion of the Universe. As
initial condition we take different values for the Hubble constant and for the
baryonic density parameter (considering however a purely baryonic Universe), as
well as different density perturbation spectra, in order to see their influence
on the behavior of the Population III objects evolution. We find, for example,
that the first mass that collapses is for ,
and with the mass scale . For
we obtain for the first
mass that collapses. The cooling-heating and photon drag processes have a key
role in the collapse of the clouds and in their thermal history. Our results
show, for example, that when we disregard the Compton cooling-heating, the
collapse of the objects with masses occurs earlier. On
the other hand, disregarding the photon drag process, the collapse occurs at a
higher redshift.Comment: 10 pages, MN plain TeX macros v1.6 file, 9 PS figures. Also available
at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES").
MNRAS in pres
Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon
The CENNS-10 experiment of the COHERENT collaboration has recently reported
the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in
liquid Argon with more than significance. In this work, we exploit
the new data in order to probe various interesting parameters which are of key
importance to CEvNS within and beyond the Standard Model. A dedicated
statistical analysis of these data shows that the current constraints are
significantly improved in most cases. We derive a first measurement of the
neutron rms charge radius of Argon, and also an improved determination of the
weak mixing angle in the low energy regime. We also update the constraints on
neutrino non-standard interactions, electromagnetic properties and light
mediators with respect to those derived from the first COHERENT-CsI data.Comment: discussion expanded including light mediators and nuclear
uncertainties, figures added, references added. V3: Fig. 7 corrected,
conclusions unchange
Collapse of Primordial Clouds II. The Role of Dark Matter
In this article we extend the study performed in our previous article on the
collapse of primordial objects. We here analyze the behavior of the physical
parameters for clouds ranging from to . We
studied the dynamical evolution of these clouds in two ways: purely baryonic
clouds and clouds with non-baryonic dark matter included. We start the
calculations at the beginning of the recombination era, following the evolution
of the structure until the collapse (that we defined as the time when the
density contrast of the baryonic matter is greater than ). We analyze the
behavior of the several physical parameters of the clouds (as, e.g., the
density contrast and the velocities of the baryonic matter and the dark matter)
as a function of time and radial position in the cloud. In this study all
physical processes that are relevant to the dynamical evolution of the
primordial clouds, as for example photon-drag (due to the cosmic background
radiation), hydrogen molecular production, besides the expansion of the
Universe, are included in the calculations. In particular we find that the
clouds, with dark matter, collapse at higher redshift when we compare the
results with the purely baryonic models. As a general result we find that the
distribution of the non-baryonic dark matter is more concentrated than the
baryonic one. It is important to stress that we do not take into account the
putative virialization of the non-baryonic dark matter, we just follow the time
and spatial evolution of the cloud solving its hydrodynamical equations. We
studied also the role of the cooling-heating processes in the purely baryonic
clouds.Comment: 8 pages, MN plain TeX macros v1.6 file, 13 PS figures. Also available
at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES").
MNRAS in pres
- …