8,622 research outputs found

    Efeito da densidade de plantio sobre o crescimento e a produção de cajueiro anão precoce irrigado.

    Get PDF
    bitstream/CNPAT-2010/5598/1/Pa-030.pd

    A COMPARATIVE STUDY FOR PROPELLER BLADE DESIGN

    Get PDF
    This work presents a comparative study between two propeller design methods for aeronautical application, with emphasis on its main element, the blade. The first method is an empirical approach based on graphical distribution of design parameters of a propeller and consists on a sequence of steps which starts from defined value for parameters like flight speed, propeller RPM, etc; with a view to obtain others dimensional parameters (diameter, twisting angle, etc) for a propeller to be used on a general aviation aircraft, with the goal to achieve certain performance target. According to the author of this method, the design of a propeller should be seen more as an art rather than exact science. The second method is well known by the aeronautical industry and called “method or theory of blade element”. This theory consider a propeller blade as a twisted wing, for which the quantities of interest to be obtained are the aerodynamics reactions, lift and drag, which are a function of the airfoil characteristics (treated as aerodynamic coefficients, cl for lift and cd for drag) for each section along blades length, twist angle, Mach, etc. For obtaining the propeller value of interest, the number of blades must also be considered. As an application for the study it was used a tri-blade propeller which equips an airplane for general aviation, that can carry 4 occupants flying at 170 Knots. The first aim of this study was to compare the results provided by the empirical method against the BET (Blade Element Theory). A secondary objective was to extend the empirical method in the design of a propeller for use on a closed circuit wind tunnel, once verified the consistency of obtained results as aimed on the first part of this study. Although the results were favorable, showing that both methods provide similar results, the study showed that the empirical method is not valid for operating and constructive conditions set for conditions like the defined for this wind tunnel, once for this type of application, the design parameters extrapolates the minimum and maximum limits established in the empirical method, providing extremely inconsistent results

    Periodically rippled graphene: growth and spatially resolved electronic structure

    Get PDF
    We studied the growth of an epitaxial graphene monolayer on Ru(0001). The graphene monolayer covers uniformly the Ru substrate over lateral distances larger than several microns reproducing the structural defects of the Ru substrate. The graphene is rippled with a periodicity dictated by the difference in lattice parameter between C and Ru. The theoretical model predict inhomogeneities in the electronic structure. This is confirmed by measurements in real space by means of scanning tunnelling spectroscopy. We observe electron pockets at the higher parts of the ripples.Comment: 5 page

    Multiple and Precessing Collimated Outflows in the Planetary Nebula IC 4634

    Full text link
    With its remarkable double-S shape, IC 4634 is an archetype of point-symmetric planetary nebulae (PN). In this paper, we present a detailed study of this PN using archival HST WFPC2 and ground-based narrow-band images to investigate its morphology, and long-slit spectroscopic observations to determine its kinematics and to derive its physical conditions and excitation. The data reveal new structural components, including a distant string of knots distributed along an arc-like feature 40"-60" from the center of the nebula, a skin of enhanced [O III]/H-alpha ratio enveloping the inner shell and the double-S feature, and a triple-shell structure. The spatio-kinematical study also finds an equatorial component of the main nebula that is kinematically independent from the bright inner S-shaped arc. We have investigated in detail the bow shock-like features in IC 4634 and found that their morphological, kinematical and emission properties are consistent with the interaction of a collimated outflow with surrounding material. Indeed, the morphology and kinematics of some of these features can be interpreted using a 3D numerical simulation of a collimated outflow precessing at a moderate, time-dependent velocity. Apparently, IC 4634 has experienced several episodes of point-symmetric ejections oriented at different directions with the outer S-shaped feature being related to an earlier point-symmetric ejection and the outermost arc-like string of knots being the relic of an even much earlier point-symmetric ejection. There is tantalizing evidence that the action of these collimated outflows has also taken part in the shaping of the innermost shell and inner S-shaped arc of IC 4634.Comment: 16 pages, 11 figures, accepted for publication in The Astrophysical Journa

    Observational Constraints on Visser's Cosmological Model

    Full text link
    Theories of gravity for which gravitons can be treated as massive particles have presently been studied as realistic modifications of General Relativity, and can be tested with cosmological observations. In this work, we study the ability of a recently proposed theory with massive gravitons, the so-called Visser theory, to explain the measurements of luminosity distance from the Union2 compilation, the most recent Type-Ia Supernovae (SNe Ia) dataset, adopting the current ratio of the total density of non-relativistic matter to the critical density (Ωm\Omega_m) as a free parameter. We also combine the SNe Ia data with constraints from Baryon Acoustic Oscillations (BAO) and CMB measurements. We find that, for the allowed interval of values for Ωm\Omega_m, a model based on Visser's theory can produce an accelerated expansion period without any dark energy component, but the combined analysis (SNe Ia + BAO + CMB) shows that the model is disfavored when compared with Λ\LambdaCDM model.Comment: 6 pages, 4 figure
    corecore