1,166 research outputs found

    European underground laboratories: An overview

    Full text link
    Underground laboratories are complementary to those where the research in fundamental physics is made using accelerators. This report focus on the logistic and on the background features of the most relevant laboratories in Europe, stressing also on the low background facilities available. In particular the report is focus on the laboratories involved in the new Europeean project ILIAS with the aim to support the European large infrastructures operating in the astroparticle physics area.Comment: 9 pages, 6 figures, Invited talk: Topical Workshop in Low Radioactivity Techniques (Sudbury, Canada) December 12-14, 2004. To be publish in AIP conference proceeding

    Neutrinos and (Anti)neutrinos from Supernovae and from the Earth in the Borexino detector

    Full text link
    The main goal of the Borexino detector, in its final phase of construction in the Gran Sasso underground laboratory, is the direct observation and measurement of the low energy component of neutrinos coming from the Sun. The unique low energy sensitivity and ultra-low background bring new capabilities to attack problems in neutrino physiscs other than solar ones. Investigation about the study of Supernoavae neutrinos and neutrino coming from the Earth (Geoneutrinos) are here resumed.Comment: 7 pages, 6 figures, proceedings of the The 1st Yamada Symposium on Neutrinos and Dark Matter in Nuclear Physics June 9-14, 2003, Nara Japa

    Borexino: A real time liquid scintillator detector for low energy solar neutrino study

    Full text link
    Borexino is a large unsegmented calorimeter featuring 300 tons of liquid scintillator, contained in a 8.5 meter nylon vessel, viewed by 2200 PMTs. The main goal of Borexino is the study, in real time, of low energy solar neutrinos, and in particular, the monoenergetic neutrinos coming from 7Be^7Be, which is one of the missing links on the solar neutrino problem. The achievement of high radiopurity level, in the order of 10−16g/g10^{-16} g/g of U/Th equivalent, necessary to the detection of the low energy component of the solar neutrino flux, was proved in the Borexino prototype: the Counting Test Facility. The detector is located underground in the Laboratori Nazionali del Gran Sasso in the center of Italy at 3500 meter water equivalent depth. In this paper the science and technology of Borexino are reviewed and its main capabilities are presented.Comment: 8 pages, 3 figures, 10th International Conference on Calorimetry in High Energy Physics. http://3w.hep.caltech.edu/calor02

    Status and potentialities of the JUNO experiment

    Full text link
    One of the main open issues of neutrino physics is the determination of the mass hierarchy, discriminating between the two possible ordering of the mass eigenvalues, known as Normal and Inverted Hierarchies. The solution of this puzzle would have a significant impact both on elementary particle physics and astrophysics. A possible way to investigate the problem is the study, with medium baseline reactor antineutrinos, of the mass dependent corrections to inverse β\beta decays. This is the idea pursued by JUNO, a multipurpose underground liquid scintillator experiment that will start data taking in very few years from now. The main characteristics and the status of the experiment are discussed here, together with its rich physics program. We focus in particular on the potentiality for mass hierarchy determination, the main goal of the experiment, on the oscillation parameters accurate measurements and on the supernova and solar neutrinos and geoneutrino studies.Comment: Invited talk given, on behalf of the JUNO Collaboration, by Vito Antonelli at the XVII International Workshop on Neutrino Telescopes (Venice, 13-17 March 2017

    Solar Neutrino Physics: historical evolution, present status and perspectives

    Full text link
    Solar neutrino physics is an exciting and difficult field of research for physicists, where astrophysics, elementary particle and nuclear physics meet. \ The Sun produces the energy that life has been using on Earth for many years, about 10910^9 y, emits a lot of particles: protons, electrons, ions, electromagnetic quanta... among them neutrinos play an important role allowing to us to check our knowledge on solar characteristics. The main aim of this paper is to offer a practical overview of various aspects concerning the solar neutrino physics: after a short historical excursus, the different detection techniques and present experimental results and problems are analysed. Moreover, the status of art of solar modeling, possible solutions to the so called solar neutrino problem (SNP) and planned detectors are reviewed.Comment: 139 pages, 42 figure

    Neutrino oscillations and Lorentz Invariance Violation in a Finslerian Geometrical model

    Full text link
    Neutrino oscillations are one of the first evidences of physics beyond the Standard Model (SM). Since Lorentz Invariance is a fundamental symmetry of the SM, recently also neutrino physics has been explored to verify the eventual modification of this symmetry and its potential magnitude. In this work we study the consequences of the introduction of Lorentz Invariance Violation (LIV) in the high energy neutrinos propagation and evaluate the impact of this eventual violation on the oscillation predictions. An effective theory explaining these physical effects is introduced via Modified Dispersion Relations. This approach, originally introduced by Coleman and Glashow, corresponds in our model to a modification of the special relativity geometry. Moreover, the generalization of this perspective leads to the introduction of a maximum attainable velocity which is specific of the particle. This can be formalized in Finsler geometry, a more general theory of space-time. In the present paper the impact of this kind of LIV on neutrino phenomenology is studied, in particular by analyzing the corrections introduced in neutrino oscillation probabilities for different values of neutrino energies and baselines of experimental interest. The possibility of further improving the present constraints on CPT-even LIV coefficients by means of our analysis is also discussed.Comment: Accepted for publication with minor revisions, will appear on European Physics Journal

    Status and the perspectives of the Jiangmen Underground Neutrino Observatory (JUNO)

    Get PDF
    One of the remaining undetermined fundamental aspects in neutrino physics is the determination of the neutrino mass hierarchy, i.e. discriminating between the two possible orderings of the mass eigenvalues, known as Normal and Inverted Hierarchies. The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kt Liquid Scintillator Detector currently under construction in the South of China, can determine the neutrino mass hierarchy and improve the precision of three oscillation parameters by one order of magnitude. Moreover, thanks to its large liquid scintillator mass, JUNO will also contribute to study neutrinos from non-reactor sources such as solar neutrinos, atmospheric neutrinos, geoneutrinos, supernova burst and diffuse supernova neutrinos. Furthermore, JUNO will also contribute to nucleon decay studies. In this work, I will describe the status and the perspectives of the JUNO experiment

    Borexino

    Get PDF
    n/
    • …
    corecore