4,402 research outputs found
Legendre expansion of the neutrino-antineutrino annihilation kernel: Influence of high order terms
We calculate the Legendre expansion of the rate of the process up to 3rd order extending previous results
of other authors which only consider the 0th and 1st order terms. Using
different closure relations for the moment equations of the radiative transfer
equation we discuss the physical implications of taking into account quadratic
and cubic terms on the energy deposition outside the neutrinosphere in a
simplified model. The main conclusion is that 2nd order is necessary in the
semi-transparent region and gives good results if an appropriate closure
relation is used.Comment: 14 pages, 4 figures. To be published in A&A Supplement Serie
Anisotropic thermal emission from magnetized neutron stars
The thermal emission from isolated neutron stars is not well understood. The
X-ray spectrum is very close to a blackbody but there is a systematic optical
excess flux with respect to the extrapolation to low energy of the best
blackbody fit. This fact, in combination with the observed pulsations in the
X-ray flux, can be explained by anisotropies in the surface temperature
distribution.We study the thermal emission from neutron stars with strong
magnetic fields in order to explain the origin of the anisotropy. We find
(numerically) stationary solutions in axial symmetry of the heat
transportequations in the neutron star crust and the condensed envelope. The
anisotropy in the conductivity tensor is included consistently. The presence of
magnetic fields of the expected strength leads to anisotropy in the surface
temperature. Models with toroidal components similar to or larger than the
poloidal field reproduce qualitatively the observed spectral properties and
variability of isolated neutron stars. Our models also predict spectral
features at energies between 0.2 and 0.6 keV.Comment: 18 pages, 19 figures, version accepted for publication in A&
Relativistic r-modes and shear viscosity
We derive the relativistic equations for stellar perturbations, including in
a consistent way shear viscosity in the stress-energy tensor, and we
numerically integrate our equations in the case of large viscosity. We consider
the slow rotation approximation, and we neglect the coupling between polar and
axial perturbations. In our approach, the frequency and damping time of the
emitted gravitational radiation are directly obtained. We find that,
approaching the inviscid limit from the finite viscosity case, the continuous
spectrum is regularized. Constant density stars, polytropic stars, and stars
with realistic equations of state are considered. In the case of constant
density stars and polytropic stars, our results for the viscous damping times
agree, within a factor two, with the usual estimates obtained by using the
eigenfunctions of the inviscid limit. For realistic neutron stars, our
numerical results give viscous damping times with the same dependence on mass
and radius as previously estimated, but systematically larger of about 60%.Comment: 8 pages, 7 figures, to appear in the Proceedings of the Albert
Einstein Century International Conference, Paris, France, July 200
Hyperbolic character of the angular moment equations of radiative transfer and numerical methods
We study the mathematical character of the angular moment equations of
radiative transfer in spherical symmetry and conclude that the system is
hyperbolic for general forms of the closure relation found in the literature.
Hyperbolicity and causality preservation lead to mathematical conditions
allowing to establish a useful characterization of the closure relations. We
apply numerical methods specifically designed to solve hyperbolic systems of
conservation laws (the so-called Godunov-type methods), to calculate numerical
solutions of the radiation transport equations in a static background. The
feasibility of the method in any kind of regime, from diffusion to
free-streaming, is demonstrated by a number of numerical tests and the effect
of the choice of the closure relation on the results is discussed.Comment: 37 pags, 12 figures, accepted for publication in MNRA
Medición del ángulo Q mediante goniometría convencional y videofotogrametría en 3D. Correlación de los resultados
Este trabajo pretende demostrar la existencia de correlación entre la medición del ángulo Q estático mediante goniometría convencional y mediante videofotogrametría en 3D, para que en próximos estudios se pueda obviar la exploración previa por el método convencional
Population Synthesis of Isolated Neutron Stars with magneto-rotational evolution II: from radio-pulsars to magnetars
Population synthesis studies constitute a powerful method to reconstruct the
birth distribution of periods and magnetic fields of the pulsar population.
When this method is applied to populations in different wavelengths, it can
break the degeneracy in the inferred properties of initial distributions that
arises from single-band studies. In this context, we extend previous works to
include -ray thermal emitting pulsars within the same evolutionary model as
radio-pulsars. We find that the cumulative distribution of the number of X-ray
pulsars can be well reproduced by several models that, simultaneously,
reproduce the characteristics of the radio-pulsar distribution. However, even
considering the most favourable magneto-thermal evolution models with fast
field decay, log-normal distributions of the initial magnetic field
over-predict the number of visible sources with periods longer than 12 s. We
then show that the problem can be solved with different distributions of
magnetic field, such as a truncated log-normal distribution, or a binormal
distribution with two distinct populations. We use the observational lack of
isolated NSs with spin periods P>12 s to establish an upper limit to the
fraction of magnetars born with B > 10^{15} G (less than 1\%). As future
detections keep increasing the magnetar and high-B pulsar statistics, our
approach can be used to establish a severe constraint on the maximum magnetic
field at birth of NSs.Comment: 12 pages, 11 figures, 5 table
- …