4 research outputs found

    mIR-99a-5p and mIR-148a-3p as candidate molecular biomarkers for the survival of lung cancer patients

    Get PDF
    MicroRNA (miRNA) has emerged as a promising biomarker for improving the current state of an early lung cancer diagnosis. Multiple studies have reported that circulating miRNAs are usually combined in a single panel to determine lung cancer risk. In this study, we sought to assess the prognostic predictive values of the potential miRNAs for lung cancer survival among Malaysian patients. The microarray analysis was performed on the isolated miRNA samples of formalin-fixed lung cancer tissues from Malaysian populations. The correlation between miRNA expression and lung adenocarcinoma (LUAD) patient survival was predicted using TGGA data, followed by extensive in silico analyses, including miRNA target gene identification, protein-protein interaction (PPI) network construction, subnetwork (SN) detection, functional enrichment analysis, gene-disease associations, and survival analysis in advanced-stage LUAD. Overall, two promising miR-99a-5p and miR-148a-3p were upregulated in the patients with good survival. We found that 64 miR-99a-5p and 95 miR-148a-3p target genes were associated with poor prognosis and highly participated in cancer-associated processes, such as apoptosis, mRNA transport and cell-cell adhesion. The density score of 4.667, 3.333, and 3.000 in respective SN1, SN2, and SN3 showed the significant subnetworks of constructed PPI leading to the identification of 17 targets, of which ~79% of them involved in neoplastic diseases. Four high-confidence target genes (SUDS3, TOMM22, KPNA4, and HMGB1) were associated with worse overall survival in LUAD patients, implying their critical roles in LUAD pathogenesis. These findings shed additional light on the roles of miR-99a-5p and miR-148a-3p as potential biomarkers for LUAD survival

    Association between MIR499A rs3746444 polymorphism and breast cancer susceptibility: a meta-analysis

    Get PDF
    Numerous studies have investigated the association of MIR499A rs3746444 polymorphism with breast cancer susceptibility, but the results have been inconsistent. In this work, we performed a meta-analysis to obtain a more reliable estimate of the association between the polymorphism and susceptibility to breast cancer. A comprehensive literature search was conducted on PubMed, Scopus, Web of Science (WoS), China National Knowledge Infrastructure (CNKI), VIP and Wanfang databases up to January 2020. A total of 14 studies involving 6,797 cases and 8,534 controls were included for analysis under five genetic models: homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). A statistically significant association was observed between the polymorphism and an increased breast cancer susceptibility under all genetic models (homozygous, OR = 1.33, 95% CI = 1.03–1.71, P = 0.03; heterozygous, OR = 1.08, 95% CI = 1.00–1.16, P = 0.04; dominant, OR = 1.15, 95% CI = 1.02–1.30; P = 0.03; recessive, OR = 1.35, 95% CI = 1.06–1.72, P = 0.01; allele, OR = 1.12, 95% CI = 1.00–1.26, P = 0.04). Subgroup analysis based on ethnicity suggested that significant association was present only among Asians, but not Caucasians. In conclusion, MIR499A rs3746444 polymorphism was significantly associated with breast cancer susceptibility among Asians, suggesting its potential use as a genetic risk marker in this population

    SARS-CoV-2 genomic surveillance in Malaysia: displacement of B.1.617.2 with AY lineages as the dominant Delta variants and the introduction of Omicron during the fourth epidemic wave

    No full text
    Objectives: This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program. Methods: COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database. Results: From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country. Conclusion: The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness

    SARS-CoV-2 genomic surveillance in Malaysia: displacement of B.1.617.2 with AY lineages as the dominant Delta variants and the introduction of Omicron during the fourth epidemic wave

    No full text
    Objectives This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program. Methods COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database. Results From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country. Conclusion The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness
    corecore