110 research outputs found

    A spiking neural network for real-time Spanish vowel phonemes recognition

    Get PDF
    This paper explores neuromorphic approach capabilities applied to real-time speech processing. A spiking recognition neural network composed of three types of neurons is proposed. These neurons are based on an integrative and fire model and are capable of recognizing auditory frequency patterns, such as vowel phonemes; words are recognized as sequences of vowel phonemes. For demonstrating real-time operation, a complete spiking recognition neural network has been described in VHDL for detecting certain Spanish words, and it has been tested in a FPGA platform. This is a stand-alone and fully hardware system that allows to embed it in a mobile system. To stimulate the network, a spiking digital-filter-based cochlea has been implemented in VHDL. In the implementation, an Address Event Representation (AER) is used for transmitting information between neurons.Ministerio de Economía y Competitividad TEC2012-37868-C04-02/0

    Estudio de tumores de la cavidad nasal y senos paranasales del perro mediante tomografía computarizada

    Get PDF
    En 8 perros se estudiaron imágenes de tomografía computarizada (TC), analizando la extensión de tumores de cavidad nasal y/o senos paranasales. La técnica resultó especialmente útil en animales con descarga nasal crónica, protrusión del globo ocular, ceguera de origen central o signos de disfunción neurológica por afectación de porciones rostrales del encéfalo.

    A LVDS Serial AER Link

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The event information is transferred using a high speed digital parallel bus (typically 16 bits and 20ns-40ns per event). This paper presents a testing platform for AER systems that allows to analyse a LVDS Serial AER link. The interface allows up to 0.7 Gbps (~40Mev/s, 16 bits/ev). The eye diagram ensures that the platform could support 1.2 Gbps.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0

    A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach

    Get PDF
    This paper presents a new architecture, design flow, and field-programmable gate array (FPGA) implementation analysis of a neuromorphic binaural auditory sensor, designed completely in the spike domain. Unlike digital cochleae that decompose audio signals using classical digital signal processing techniques, the model presented in this paper processes information directly encoded as spikes using pulse frequency modulation and provides a set of frequency-decomposed audio information using an address-event representation interface. In this case, a systematic approach to design led to a generic process for building, tuning, and implementing audio frequency decomposers with different features, facilitating synthesis with custom features. This allows researchers to implement their own parameterized neuromorphic auditory systems in a low-cost FPGA in order to study the audio processing and learning activity that takes place in the brain. In this paper, we present a 64-channel binaural neuromorphic auditory system implemented in a Virtex-5 FPGA using a commercial development board. The system was excited with a diverse set of audio signals in order to analyze its response and characterize its features. The neuromorphic auditory system response times and frequencies are reported. The experimental results of the proposed system implementation with 64-channel stereo are: a frequency range between 9.6 Hz and 14.6 kHz (adjustable), a maximum output event rate of 2.19 Mevents/s, a power consumption of 29.7 mW, the slices requirements of 11 141, and a system clock frequency of 27 MHz.Ministerio de Economía y Competitividad TEC2012-37868-C04-02Junta de Andalucía P12-TIC-130

    Image convolution using a probabilistic mapper on USB-AER board

    Get PDF
    In this demo we propose a method for computing real time convolution on AER images. For that we use signed events. The AER events produced on an AER retina or an image/video to AER conversor, are processed using a probabilistic multi event mapper that produces more than one event for each incoming event according to an assigned probability. Kernel convolution size are limited by mapping tables size (on board RAM) and AER bus bandwidth. On reconstruction signed events needs to be simplified (subtracted) to get final convolved image. For that two different methods are proposed.Comisión Interministerial de Ciencia y Tecnología TIC-2006-08164-C03-02Junta de Andalucía P06-TIC-0141

    Two Hardware Implementations of the Exhaustive Synthetic AER Generation Method

    Get PDF
    Address-Event-Representation (AER) is a communications protocol for transferring images between chips, originally developed for bio-inspired image processing systems. In [6], [5] various software methods for synthetic AER generation were presented. But in neuro-inspired research field, hardware methods are needed to generate AER from laptop computers. In this paper two real time implementations of the exhaustive method, proposed in [6], [5], are presented. These implementations can transmit, through AER bus, images stored in a computer using USB-AER board developed by our RTCAR group for the CAVIAR EU project.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0

    LVDS Serial AER Link performance

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The event information is transferred using a high speed digital parallel bus (typically 16 bits and 20ns-40ns per event). This paper presents a testing platform for AER systems that allows analysing a LVDS Serial AER link produced by a Spartan 3 FPGA, or by a commercial LVDS transceiver. The interface allows up to 0.728 Gbps (~40Mev/s, 16 bits/ev). The eye diagram ensures that the platform could support 1.2 Gbps.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0

    Semi-wildlife gait patterns classification using Statistical Methods and Artificial Neural Networks

    Get PDF
    Several studies have focused on classifying behavioral patterns in wildlife and captive species to monitor their activities and so to understanding the interactions of animals and control their welfare, for biological research or commercial purposes. The use of pattern recognition techniques, statistical methods and Overall Dynamic Body Acceleration (ODBA) are well known for animal behavior recognition tasks. The reconfigurability and scalability of these methods are not trivial, since a new study has to be done when changing any of the configuration parameters. In recent years, the use of Artificial Neural Networks (ANN) has increased for this purpose due to the fact that they can be easily adapted when new animals or patterns are required. In this context, a comparative study between a theoretical research is presented, where statistical and spectral analyses were performed and an embedded implementation of an ANN on a smart collar device was placed on semi-wild animals. This system is part of a project whose main aim is to monitor wildlife in real time using a wireless sensor network infrastructure. Different classifiers were tested and compared for three different horse gaits. Experimental results in a real time scenario achieved an accuracy of up to 90.7%, proving the efficiency of the embedded ANN implementation.Junta de Andalucía P12-TIC-1300Ministerio de Economía y Competitividad TEC2016-77785-

    AER Auditory Filtering and CPG for Robot Control

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). The event information in an AER system is transferred using a highspeed digital parallel bus. This paper presents an experiment using AER for sensing, processing and finally actuating a Robot. The AER output of a silicon cochlea is processed by an AER filter implemented on a FPGA to produce rhythmic walking in a humanoid robot (Redbot). We have implemented both the AER rhythm detector and the Central Pattern Generator (CPG) on a Spartan II FPGA which is part of a USB-AER platform developed by some of the authors.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0

    AER tools for Communications and Debugging

    Get PDF
    Address-event-representation (AER) is a communications protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. To develop and test AER based systems it is convenient to have a set of instruments that would allow to: generate AER streams, monitor the output produced by neural chips and modify the spike stream produced by an emitting chip to adapt it to the requirements of the receiving elements. In this paper we present a set of tools that implement these functions developed in the CAVIAR EU projectUnión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0
    corecore